新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 功率器件熱設(shè)計基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息

功率器件熱設(shè)計基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息

作者: 時間:2025-01-23 來源:英飛凌 收藏

 前言 /

本文引用地址:http://2s4d.com/article/202501/466586.htm

功率半導(dǎo)體是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的基礎(chǔ)知識,才能完成精確,提高的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。

熱設(shè)計基礎(chǔ)系列文章會比較系統(tǒng)地講解熱設(shè)計基礎(chǔ)知識,相關(guān)標(biāo)準(zhǔn)和工程測量方法。

驅(qū)動IC電流越來越大,如采用DSO-8 300mil寬體封裝的EiceDRIVER? 1ED3241MC12H和1ED3251MC12H 2L-SRC緊湊型單通道隔離式柵極驅(qū)動器,驅(qū)動電流高達(dá)+/-18A,且具有兩級電壓變化率控制和有源米勒鉗位,獲得UL 1577和VDE 0884-11認(rèn)證,而1ED3125MU12F采用DSO-8 150mil窄體封裝,驅(qū)動電流也高達(dá)+/-10A,這對于器件的散熱是個挑戰(zhàn)。

更多大電流驅(qū)動器產(chǎn)品參考文末圖表。

面對驅(qū)動電路散熱設(shè)計的挑戰(zhàn),關(guān)鍵一步是精確的熱設(shè)計,保證工作結(jié)溫不要超過器件允許的最高工作結(jié)溫。這就需要一種簡單的結(jié)溫估算方法,通過測量器件表面溫度來推算結(jié)溫,這是工程師的夢想。為此在數(shù)據(jù)手冊上給出了Ψ th(j-top) ,通過測溫和計算獲取結(jié)溫信息。

EiceDRIVER? IC散熱基礎(chǔ)知識

計算電子元器件的結(jié)溫T 通常以物理測量值為基礎(chǔ),需要知道環(huán)境溫度T 或其它需要且可以測量的元器件散熱通路上的溫度和熱阻,此外,還必須知道元器件功耗。

有了這三類數(shù)據(jù),我們就能使用眾所周知的公式計算結(jié)溫:

其中,R th(j-a),tot 是從結(jié)點到環(huán)境的總熱阻,P 是EiceDRIVER? IC的功耗,T 的是環(huán)境溫度。總熱阻R th(j-a),tot 只能通過測量方式獲得,因為系統(tǒng)的布局、PCB在系統(tǒng)中的安裝方式以及系統(tǒng)內(nèi)部的氣流對該值的影響很大。

根據(jù)圖1a驅(qū)動IC的橫截面圖,可以知道有兩個熱流路徑。主要路徑通常在引線框架和管腳上。芯片上的焊盤,通常連接到一個甚至多個管腳,這些管腳幫助熱量傳導(dǎo)到PCB,進(jìn)而也改善了結(jié)到環(huán)境的散熱。其次,還有少量的熱流通過IC表面(例如上表面)直接傳到環(huán)境大氣中,此路徑散熱效率主要取決于芯片表面的對流條件,但它也會影響到結(jié)點到環(huán)境的總熱阻。熱流的第三個路徑是熱輻射,但這一路徑的影響很小,可以忽略。

圖1a. 驅(qū)動IC的橫截面

相關(guān)的熱等效電路一般是根據(jù)這種散熱模型推導(dǎo)出來的,如圖1b所示。請注意,我們可以通過在集成電路表面安裝散熱器來改變結(jié)至環(huán)境總熱阻R th(j-a),tot ,并迫使主要熱量流經(jīng)此路徑。然而,這一方案與大多數(shù)設(shè)計無緣,主要受限于爬電距離,而且PCB組裝工藝也會變得更加復(fù)雜,增加成本。

圖1b. 熱等效電路

圖中P D1 部分遠(yuǎn)小于P D2 ,因為結(jié)到IC表面的熱阻以及IC表面到環(huán)境的熱阻遠(yuǎn)遠(yuǎn)大于結(jié)到引線框架(即“管殼”),再到PCB環(huán)境的熱阻。這完全合情合理,因為塑封材料的導(dǎo)熱能力很差,而引線框架通常由銅制成,熱導(dǎo)率遠(yuǎn)遠(yuǎn)高于前者。

簡化的熱模型

將EiceDRIVER? IC或功率晶體管的表面溫度作為結(jié)溫參考,這是一種理想的方法。根據(jù)圖2不難發(fā)現(xiàn),芯片表面到封裝表面的距離d會對熱流產(chǎn)生影響。該距離越大,必然導(dǎo)致芯片表面溫度與器件表面的溫差越大。設(shè)計時也必須考慮到,即使兩個不同功率的集成電路具有相同的表面溫度,其功率耗散也可能完全不同。因此,在比較兩個功率集成電路時,如果不知道功率耗散和集成電路的封裝參數(shù),表面溫度本身就沒有意義了。

圖2a. 簡化熱流路徑后的IC和封裝橫截面

現(xiàn)在,對前面的熱模型經(jīng)過修改,滿足工程方法的要求。我們現(xiàn)在可以合理地假定,P D1 部分近似為零,并假定所有熱量都流經(jīng)管腳。于是等效電路可簡化為圖2b所示的電路。這樣就能直接在IC表面測量的結(jié)溫。但是,通過上面完整熱路我們可以得知,由于對流的存在,該表面溫度將會稍低于實際結(jié)溫。

圖2b. 簡化后的熱等效電路


圖2b中有一個用虛線表示的元器件,它代表結(jié)點到上表面的psi(Ψ-),結(jié)到器件表面Ψ th(j-top) 并非物理意義上的熱阻,因為根據(jù)圖2b中的熱等效電路,理論上我們已經(jīng)假設(shè)此方向沒有熱流。此路徑的末端為開路的熱絕緣狀態(tài)。但即便如此,封裝上表面特定點的溫度與結(jié)點溫度之間仍存在某種關(guān)系。這種關(guān)系類似于熱阻:

現(xiàn)在,在計算出功耗后,只需通過測量IC表面的溫度,就能確定EiceDRIVER?柵極驅(qū)動IC的平均結(jié)溫。

熱系數(shù)Ψ th(j-top) 包含在EiceDRIVER?數(shù)據(jù)表中,并且已考慮空氣引起的自然對流。它是通過仿真方法獲取的,并未經(jīng)過測量驗證。我們可以通過優(yōu)化系統(tǒng)中PCB位置,使用機柜內(nèi)自然氣流或強制冷卻的方法來改善EiceDRIVER? IC的散熱。

簡化模型的局限性

該簡化模型當(dāng)然存在一些局限性,其中最重要的局限性包括以下幾點:

1

通過管腳到PCB的熱傳導(dǎo)和器件表面自然對流所占的熱流比率,或者說與應(yīng)用安裝條件的相關(guān)性:

用戶可以通過在IC表面粘貼或固定小型散熱器來改善IC表面散熱,這肯定會對Ψ值的結(jié)果產(chǎn)生影響,使該值變得更大。

2

當(dāng)紅外測溫儀夠不到芯片表面時,就需要在測量點安裝溫度傳感器:

溫度傳感器必須與IC表面進(jìn)行充分的熱接觸。通??紤]使用導(dǎo)熱膠,但I(xiàn)C表面與傳感器之間的任何膠層都會對結(jié)果產(chǎn)生影響。如果溫度傳感器較大,其熱容也大,就會起到散熱器的效果。

3

PCB設(shè)計對仿真結(jié)果的影響:

PCB走線設(shè)計,特別是直接連接層的銅層厚度對整個散熱效果有很大的影響。引腳處的較大銅面積或較厚的銅層可改善EiceDRIVER? IC的散熱。在帶Ψ-值的數(shù)據(jù)手冊中可以找到用于仿真Ψ-值的PCB設(shè)計作為條件。

摘自EiceDRIVER? 1ED32xxMC12H數(shù)據(jù)手冊



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉