功率器件 文章 最新資訊
英飛凌OptiMOS? 80V、100V以及MOTIX?功率器件為Reflex Drive無人機提供高性能電機控制解決方案
- 來自印度的深科技初創(chuàng)公司Reflex Drive選擇英飛凌科技股份公司(FSE代碼:IFX / OTCQX代碼:IFNNY)的半導體功率器件,用于其下一代無人機(UAV)電機控制解決方案。通過集成英飛凌OptiMOS? 80 V和100 V功率器件,Reflex Drive的電子調(diào)速器(ESC)實現(xiàn)了更好的熱管理和更高的效率,從而在緊湊的設計中實現(xiàn)了高功率密度。此外,通過采用將XMC1404微控制器與MOTIXTM?6EDL7141?三相柵極驅動器IC結合的英飛凌MOTIX? IMD7
- 關鍵字: 英飛凌 功率器件 Reflex Drive 無人機 電機控制
據(jù)報道,Wolfspeed 將被 Apollo 領導的債權人接管,同時競爭對手將迎來機遇
- 據(jù)路透社援引彭博社報道,在關于即將破產(chǎn)的傳聞出現(xiàn)近一個月后,Wolfspeed 現(xiàn)在正面臨一次重大動蕩。由 Apollo 全球管理公司領導的債權人正準備根據(jù)破產(chǎn)計劃接管公司。報道稱,這家陷入困境的碳化硅巨頭預計將在幾天內(nèi)公布一項預包裝破產(chǎn)計劃——旨在迅速削減數(shù)十億美元的債務。在鎖定重組協(xié)議后,Wolfspeed 將要求債權人就計劃進行投票,然后正式申請第 11 章保護,報道補充道。由意法半導體領導的對頭將受益根據(jù) TrendForce 的觀察,由于破產(chǎn)程序的不確定性,Wolfspeed 的 Si
- 關鍵字: 碳化硅 意法半導體 功率器件
新型功率器件的老化特性:HTOL高溫工況老化測試
- _____隨著技術的不斷進步,新型功率器件如碳化硅(SiC)和氮化鎵(GaN)因其優(yōu)異的性能被廣泛應用于各種電子設備中。然而,這些器件在長期連續(xù)使用后會出現(xiàn)老化現(xiàn)象,導致性能退化。如何在短時間內(nèi)準確評估這些器件的老化特性,成為行業(yè)關注的焦點。目前,針對功率器件的老化測試主要包括多種不同的測試方式。其中,JEDEC制定的老化測試標準(如HTGB、HTRB、H3TRB和功率循環(huán)測試)主要針對傳統(tǒng)的硅基功率器件。對于新型的SiC等功率器件,AQG-324標準進一步要求增加動態(tài)老化測試,如動態(tài)柵偏和動態(tài)反偏測試。
- 關鍵字: 功率器件 老化特性 HTOL 高溫工況 老化測試
電感的失效分析
- 1、電感本質(zhì)我們通常所說的電感指的是電感器件,它是用絕緣導線(例如漆包線,沙包線等)繞制而成的電磁感應元件。在電路中,當電流流過導體時,會產(chǎn)生電磁場,電磁場的大小除以電流的大小就是電感。電感是衡量線圈產(chǎn)生電磁感應能力的物理量。給一個線圈通入電流,線圈周圍就會產(chǎn)生磁場,線圈就有磁通量通過。通入線圈的電源越大,磁場就越強,通過線圈的磁通量就越大。實驗證明,通過線圈的磁通量和通入的電流是成正比的,它們的比值叫做自感系數(shù),也叫做電感。1.2 電感分類按電感形式 分類:固定電感、可變電感。按導磁體性質(zhì)分類:空芯線圈
- 關鍵字: 電感 功率器件
功率器件的熱設計基礎(一)---功率半導體的熱阻
- / 前言 /功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件熱設計基礎系列文章會比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。散熱功率半導體器件在開通和關斷過程中和導通電流時會產(chǎn)生損耗,損失的能量會轉化為熱能,表現(xiàn)為半導體器件發(fā)熱,器件的發(fā)熱會造成器件各點溫度的升高。半導體器件的溫度升高,取決于產(chǎn)生熱量多少(損耗)和散熱效率(散熱通路的熱阻)。IGBT模塊的風冷散熱
- 關鍵字: 英飛凌 功率器件 熱設計 熱阻
功率器件的熱設計基礎(二)---熱阻的串聯(lián)和并聯(lián)
- / 前言 /功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件熱設計基礎系列文章將比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。第一講 《功率器件熱設計基礎(一)----功率半導體的熱阻》 ,已經(jīng)把熱阻和電阻聯(lián)系起來了,那自然會想到熱阻也可以通過串聯(lián)和并聯(lián)概念來做數(shù)值計算。熱阻的串聯(lián)首先,我們來看熱阻的串聯(lián)。當兩個或多個導熱層依次排列,熱量依次通過
- 關鍵字: 英飛凌 功率器件 熱設計 串聯(lián) 并聯(lián)
功率器件熱設計基礎(三)----功率半導體殼溫和散熱器溫度定義和測試方法
- / 前言 /功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件熱設計基礎系列文章會聯(lián)系實際,比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。功率半導體模塊殼溫和散熱器溫度功率模塊的散熱通路由芯片、DCB、銅基板、散熱器和焊接層、導熱脂層串聯(lián)構成的。各層都有相應的熱阻,這些熱阻是串聯(lián)的,總熱阻等于各熱阻之和,這是因為熱量在傳遞過程中,需要依次克服每一個熱阻,所以總熱阻就是
- 關鍵字: 英飛凌 功率器件 熱設計 散熱器
功率器件熱設計基礎(四)——功率半導體芯片溫度和測試方法
- / 前言 /功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件熱設計基礎系列文章會比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。芯片表面溫度芯片溫度是一個很復雜的問題,從芯片表面測量溫度,可以發(fā)現(xiàn)單個芯片溫度也是不均勻的。所以工程上設計一般可以取加權平均值或給出設計余量。這是一個MOSFET單管中的芯片,直觀可以看出芯片表面溫度是不一致的,光標1的位置與光標2位置溫度
- 關鍵字: 英飛凌 功率器件 熱設計 溫度測試
功率器件熱設計基礎(七)——熱等效模型
- 前言 /功率半導體熱設計是實現(xiàn)IGBT、SiC MOSFET高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件熱設計基礎系列文章會比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。有了熱阻熱容的概念,自然就會想到在導熱材料串并聯(lián)時,就可以用阻容網(wǎng)絡來描述。一個帶銅基板的模塊有7層材料構成,各層都有一定的熱阻和熱容,哪怕是散熱器,其本身也有熱阻和熱容。整個散熱通路還包括導熱脂、散熱器和環(huán)境。不同時間尺度下
- 關鍵字: 英飛凌 功率器件 熱設計 熱等效模型
功率器件熱設計基礎(九)——功率半導體模塊的熱擴散
- / 前言 /功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。功率器件熱設計基礎系列文章會比較系統(tǒng)地講解熱設計基礎知識,相關標準和工程測量方法。任何導熱材料都有熱阻,而且熱阻與材料面積成反比,與厚度成正比。按道理說,銅基板也會有額外的熱阻,那為什么實際情況是有銅基板的模塊散熱更好呢?這是因為熱的橫向擴散帶來的好處。熱橫向擴散除了熱阻熱容,另一個影響半導體散熱的重要物理效應為熱的橫向傳
- 關鍵字: 英飛凌 功率器件 熱設計 熱擴散
功率器件介紹
您好,目前還沒有人創(chuàng)建詞條功率器件!
歡迎您創(chuàng)建該詞條,闡述對功率器件的理解,并與今后在此搜索功率器件的朋友們分享。 創(chuàng)建詞條
歡迎您創(chuàng)建該詞條,闡述對功率器件的理解,并與今后在此搜索功率器件的朋友們分享。 創(chuàng)建詞條
關于我們 -
廣告服務 -
企業(yè)會員服務 -
網(wǎng)站地圖 -
聯(lián)系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網(wǎng)安備11010802012473
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權所有 北京東曉國際技術信息咨詢有限公司
