基于FPGA的跳擴頻信號發(fā)送系統(tǒng)設計
對部隊中已大量裝備使用的跳擴頻電臺的維護與測試需要性能穩(wěn)定的跳擴頻信號源,因此非常必要研制使用方便、性能可靠的跳擴頻信號源,以解決部隊急需,從而提高部隊的機務維修保障能力。隨著電子技術的發(fā)展,尤其是近十年來數字化技術、超大規(guī)模集成電路和軟件方面的新技術新成果不斷涌現(xiàn),使得設計高可靠、高精度、高穩(wěn)定可攜帶方便的測試系統(tǒng)成為可能。與傳統(tǒng)測試系統(tǒng)中的跳擴頻信號源相比,本跳擴頻信號發(fā)送系統(tǒng)采用了FPGA、DDS等多種先進技術,具有體積小、重量輕、成本低、集成度高、精度高、可靠性強等優(yōu)點,能夠有效地模擬產生需要的跳擴頻信號,為機載跳擴頻電臺的測試提供可靠的激勵信號。
1 系統(tǒng)設計總體方案
針對信號源需求分析,設計系統(tǒng)總體方案如圖1所示。FPGA接收主控單元(MCU)傳遞的信息數據,接收數據源速率為4.8 kb/s?;鶐幚聿糠诌M行差錯編碼,編碼處理后的基帶信息數據以9.6 kb/s信息速率輸入成幀電路,組幀后信息速率為38.4kb/s。中頻處理電路接收38.4 kb/s信息速率的數據,并進行擴頻和DQPSK調制。擴頻調制PN碼碼片速率為1.228 8 M碼片/秒,即每個調制符號對應64個碼片。系統(tǒng)中頻輸出8.192 MHz DQPSK數字數據。系統(tǒng)帶寬跨度為UHF(超短波)105~156 MHz,分了16個跳頻點帶寬≥45.5MHz。跳頻最小間隔≥2.5 MHz,跳頻速度1 000 Hop/s。
2 關鍵模塊研究與實現(xiàn)
2.1 DQPSK調制
中頻調制使用數字化DQPSK(相對相移鍵控)調制,該調制技術能有效利用數據帶寬,同時采用差分編碼解決QPSK調制時出現(xiàn)的相位模糊問題,保證了數據的正確解調。DQPSK調制框圖如圖2所示。
差錯控制編碼采用(217)卷積編碼,碼率為1/2。交織采用塊交織,交織器長度為384,即一大幀的長度。為保證數據的連續(xù)發(fā)送,交織采用兩個交織器輪流工作。交織后數據以9.6 kb/s交給DQPSK調制,經差分串并轉換,以64位碼長的M序列對轉換后碼率減半的數據進行擴頻調制和成形濾波。數控振蕩器(NCO)產生正交調制的波形,對成形濾波后的信號進行正交調制。
2.1.1 濾波成形
DOPSK調制后的信號存在以下問題:調制后的信號將出現(xiàn)瞬時變化,這將不可避免地導致信號的瞬時頻譜的擴散,如果無失真地傳輸該信號就要求有很寬的信道帶寬,這在信號傳輸中是無法實現(xiàn),唯一有效的途徑就是采用濾波技術限制頻譜,這就需要基帶濾波?;鶐V波是在時域上擴展符號,如果設計的不好,在接收端將會引起嚴重的碼間干擾(ISI)。無碼間擾準則可表示為:
平方根升余弦滾降濾波器有一個平滑的過渡帶,通過引入滾降系數來改變傳輸信號的成形波形,可以減少抽樣定時脈沖誤差所帶來的影響。本設計中采用56階,滾降系數為0.35的平方根升余弦濾波器,每個符號抽樣8個點。系統(tǒng)中所設計的成形濾波器頻域響應如圖3所示。
評論