在SMPS應用中選擇IGBT和MOSFET的比較
開關(guān)電源 (Switch Mode Power Supply;SMPS) 的性能在很大程度上依賴于功率半導體器件的選擇,即開關(guān)管和整流器。雖然沒有萬全的方案來解決選擇IGBT還是MOSFET的問題,但針對特定SMPS應用中的IGBT 和 MOSFET進行性能比較,確定關(guān)鍵參數(shù)的范圍還是能起到一定的參考作用。本文將對一些參數(shù)進行探討,如硬開關(guān)和軟開關(guān)ZVS (零電壓轉(zhuǎn)換) 拓撲中的開關(guān)損耗,并對電路和器件特性相關(guān)的三個主要功率開關(guān)損耗—導通損耗、傳導損耗和關(guān)斷損耗進行描述。此外,還通過舉例說明二極管的恢復特性是決定 MOSFET 或 IGBT導通開關(guān)損耗的主要因素,討論二極管恢復性能對于硬開關(guān)拓撲的影響。
SMPS的進展
一直以來,離線式SMPS產(chǎn)業(yè)由功率半導體產(chǎn)業(yè)的功率元件發(fā)展所推動。作為主要的功率開關(guān)器件IGBT、功率MOSFET和功率二極管正不斷改良,相應地也是明顯地改善了SMPS的效率,減小了尺寸,重量和成本也隨之降低。由于器件對應用性能的這種直接影響,SMPS設(shè)計人員必須比較不同半導體技術(shù)的各種優(yōu)缺點以優(yōu)化其設(shè)計。例如,MOSFET一般在較低功率應用及較高頻應用(即功率《1000W及開關(guān)頻率≥100kHz)中表現(xiàn)較好,而 IGBT則在較低頻及較高功率設(shè)計中表現(xiàn)卓越。為了做出真實的評估,筆者在SMPS應用中比較了來自飛兆半導體的IGBT器件FGP20N6S2 (屬于SMPS2系列)和MOSFET器件 FCP11N60(屬于SuperFET 產(chǎn)品族)。這些產(chǎn)品具有相近的芯片尺寸和相同的熱阻抗RθJC,代表了功率半導體產(chǎn)業(yè)現(xiàn)有的器件水平。
導通損耗
除了IGBT的電壓下降時間較長外,IGBT和功率MOSFET的導通特性十分類似。由基本的IGBT等效電路(見圖1)可看出,完全調(diào)節(jié)PNP BJT集電極基極區(qū)的少數(shù)載流子所需的時間導致了導通電壓拖尾(voltage tail)出現(xiàn)。
圖1 IGBT等效電路
這種延遲引起了類飽和 (Quasi-saturation) 效應,使集電極/發(fā)射極電壓不能立即下降到其VCE(sat)值。這種效應也導致了在ZVS情況下,在負載電流從組合封裝的反向并聯(lián)二極管轉(zhuǎn)換到 IGBT的集電極的瞬間,VCE電壓會上升。IGBT產(chǎn)品規(guī)格書中列出的Eon能耗是每一轉(zhuǎn)換周期Icollector與VCE乘積的時間積分,單位為焦耳,包含了與類飽和相關(guān)的其他損耗。其又分為兩個Eon能量參數(shù),Eon1和Eon2。Eon1是沒有包括與硬開關(guān)二極管恢復損耗相關(guān)能耗的功率損耗; Eon2則包括了與二極管恢復相關(guān)的硬開關(guān)導通能耗,可通過恢復與IGBT組合封裝的二極管相同的二極管來測量,典型的Eon2測試電路如圖2所示。 IGBT通過兩個脈沖進行開關(guān)轉(zhuǎn)換來測量Eon。第一個脈沖將增大電感電流以達致所需的測試電流,然后第二個脈沖會測量測試電流在二極管上恢復的Eon損耗。
圖2 典型的導通能耗Eon和關(guān)斷能耗Eoff 測試電路
開關(guān)電源 (Switch Mode Power Supply;SMPS) 的性能在很大程度上依賴于功率半導體器件的選擇,即開關(guān)管和整流器。雖然沒有萬全的方案來解決選擇IGBT還是MOSFET的問題,但針對特定SMPS應用中的IGBT 和 MOSFET進行性能比較,確定關(guān)鍵參數(shù)的范圍還是能起到一定的參考作用。本文將對一些參數(shù)進行探討,如硬開關(guān)和軟開關(guān)ZVS (零電壓轉(zhuǎn)換) 拓撲中的開關(guān)損耗,并對電路和器件特性相關(guān)的三個主要功率開關(guān)損耗—導通損耗、傳導損耗和關(guān)斷損耗進行描述。此外,還通過舉例說明二極管的恢復特性是決定 MOSFET 或 IGBT導通開關(guān)損耗的主要因素,討論二極管恢復性能對于硬開關(guān)拓撲的影響。
SMPS的進展
一直以來,離線式SMPS產(chǎn)業(yè)由功率半導體產(chǎn)業(yè)的功率元件發(fā)展所推動。作為主要的功率開關(guān)器件IGBT、功率MOSFET和功率二極管正不斷改良,相應地也是明顯地改善了SMPS的效率,減小了尺寸,重量和成本也隨之降低。由于器件對應用性能的這種直接影響,SMPS設(shè)計人員必須比較不同半導體技術(shù)的各種優(yōu)缺點以優(yōu)化其設(shè)計。例如,MOSFET一般在較低功率應用及較高頻應用(即功率《1000W及開關(guān)頻率≥100kHz)中表現(xiàn)較好,而 IGBT則在較低頻及較高功率設(shè)計中表現(xiàn)卓越。為了做出真實的評估,筆者在SMPS應用中比較了來自飛兆半導體的IGBT器件FGP20N6S2 (屬于SMPS2系列)和MOSFET器件 FCP11N60(屬于SuperFET 產(chǎn)品族)。這些產(chǎn)品具有相近的芯片尺寸和相同的熱阻抗RθJC,代表了功率半導體產(chǎn)業(yè)現(xiàn)有的器件水平。
導通損耗
除了IGBT的電壓下降時間較長外,IGBT和功率MOSFET的導通特性十分類似。由基本的IGBT等效電路(見圖1)可看出,完全調(diào)節(jié)PNP BJT集電極基極區(qū)的少數(shù)載流子所需的時間導致了導通電壓拖尾(voltage tail)出現(xiàn)。
圖1 IGBT等效電路
這種延遲引起了類飽和 (Quasi-saturation) 效應,使集電極/發(fā)射極電壓不能立即下降到其VCE(sat)值。這種效應也導致了在ZVS情況下,在負載電流從組合封裝的反向并聯(lián)二極管轉(zhuǎn)換到 IGBT的集電極的瞬間,VCE電壓會上升。IGBT產(chǎn)品規(guī)格書中列出的Eon能耗是每一轉(zhuǎn)換周期Icollector與VCE乘積的時間積分,單位為焦耳,包含了與類飽和相關(guān)的其他損耗。其又分為兩個Eon能量參數(shù),Eon1和Eon2。Eon1是沒有包括與硬開關(guān)二極管恢復損耗相關(guān)能耗的功率損耗; Eon2則包括了與二極管恢復相關(guān)的硬開關(guān)導通能耗,可通過恢復與IGBT組合封裝的二極管相同的二極管來測量,典型的Eon2測試電路如圖2所示。 IGBT通過兩個脈沖進行開關(guān)轉(zhuǎn)換來測量Eon。第一個脈沖將增大電感電流以達致所需的測試電流,然后第二個脈沖會測量測試電流在二極管上恢復的Eon損耗。
圖2 典型的導通能耗Eon和關(guān)斷能耗Eoff 測試電路
在硬開關(guān)導通的情況下,柵極驅(qū)動電壓和阻抗以及整流二極管的恢復特性決定了Eon開關(guān)損耗。對于像傳統(tǒng)CCM升壓PFC電路來說,升壓二極管恢復特性在Eon (導通) 能耗的控制中極為重要。除了選擇具有最小Trr和QRR的升壓二極管之外,確保該二極管擁有軟恢復特性也非常重要。軟化度 (Softness),即tb/ta比率,對開關(guān)器件產(chǎn)生的電氣噪聲和電壓尖脈沖 (voltage spike) 有相當?shù)挠绊?。某些高速二極管在時間tb內(nèi),從IRM(REC)開始的電流下降速率(di/dt)很高,故會在電路寄生電感中產(chǎn)生高電壓尖脈沖。這些電壓尖脈沖會引起電磁干擾(EMI),并可能在二極管上導致過高的反向電壓。
在硬開關(guān)電路中,如全橋和半橋拓撲中,與IGBT組合封裝的是快恢復管或MOSFET體二極管,當對應的開關(guān)管導通時二極管有電流經(jīng)過,因而二極管的恢復特性決定了Eon損耗。所以,選擇具有快速體二極管恢復特性的MOSFET十分重要,如飛兆半導體的FQA28N50F FRFETTM。不幸的是,MOSFET的寄生二極管或體二極管的恢復特性比業(yè)界目前使用的分立二極管要緩慢。因此,對于硬開關(guān)MOSFET應用而言,體二極管常常是決定SMPS工作頻率的限制因素。
一般來說,IGBT組合封裝二極管的選擇要與其應用匹配,具有較低正向傳導損耗的較慢型超快二極管與較慢的低VCE(sat)電機驅(qū)動IGBT組合封裝在一起。相反地,軟恢復超快二極管,如飛兆半導體的StealthTM系列,可與高頻SMPS2開關(guān)模式IGBT組合封裝在一起。
除了選擇正確的二極管外,設(shè)計人員還能夠通過調(diào)節(jié)柵極驅(qū)動導通源阻抗來控制Eon損耗。降低驅(qū)動源阻抗將提高IGBT或MOSFET的導通 di/dt及減小Eon損耗。Eon損耗和EMI需要折中,因為較高的di/dt 會導致電壓尖脈沖、輻射和傳導EMI增加。為選擇正確的柵極驅(qū)動阻抗以滿足導通di/dt 的需求,可能需要進行電路內(nèi)部測試與驗證,然后根據(jù)MOSFET轉(zhuǎn)換曲線可以確定大概的值 (見圖3)。
圖3 MOSFET的轉(zhuǎn)移特性
假定在導通時,F(xiàn)ET電流上升到10A,根據(jù)圖3中25℃的那條曲線,為了達到10A的值,柵極電壓必須從5.2V轉(zhuǎn)換到6.7V,平均GFS為10A/(6.7V-5.2V)=6.7mΩ。
評論