新聞中心

EEPW首頁 > 電源與新能源 > 業(yè)界動態(tài) > 采用SiC FET盡可能提升圖騰柱PFC級的能效

采用SiC FET盡可能提升圖騰柱PFC級的能效

作者: 時間:2021-05-31 來源:集成電路 收藏

圖騰柱電路能顯著改善交流輸入轉(zhuǎn)換器的效率,但是主流半導體開關(guān)技術(shù)的局限性使其不能發(fā)揮全部潛力。不過,能突破這些局限性。本文介紹了如何在數(shù)千瓦電壓下實現(xiàn)99.3%以上的效率。

本文引用地址:http://2s4d.com/article/202105/426022.htm


正文

交流輸入電源的設計師必須竭力滿足許多要求,包括功能要求、安全要求和EMC要求等等。他們通常需要進行權(quán)衡取舍,一個好例子是既要求達到服務器電源的“鈦”標準等能效目標,又要用功率因素校正()將線路諧波發(fā)射保持在低水平,以幫助電網(wǎng)可靠高效地運行。在大部分情況下,會通過升壓轉(zhuǎn)換器部分實施,升壓轉(zhuǎn)換器會將整流后的主電壓升為高直流電壓,而脈沖寬度調(diào)制迫使線路電流符合正弦波和線路電壓的相位。雖然PFC級無法避免損耗,但人們在設計時耗費了大量努力來提高效率,使得從交流輸入電轉(zhuǎn)為高壓直流電時可接受的最低效率也要超過99%。


圖騰柱PFC級的導電路徑中的組件較少

橋式整流器可為單獨的升壓級提供整流后的交流電,如圖1(左)所示。該方式被廣泛采用,以獲得有效的功率因數(shù)校正,但是僅二極管中的損耗就可以輕松超過整體損耗預算的1%。圖騰柱PFC級(TPPFC)是更好的解決方案,如圖1(右)所示。

1622414845915010.png

【圖1:橋式整流器輸入(左)和圖騰柱PFC級(右)】


在TPPFC電路中,當連接到L1的交流電主線路為正壓時,Q1是升壓開關(guān),Q2是同步整流器,Q3導電以允許線路電流循環(huán)而Q4阻斷電路。當交流輸入電壓為負壓時,Q1和Q2角色互換,Q3阻斷電路而Q4導電。無論何時,在TPPFC級中,導電的器件要比橋輸入PFC少一個,而整體壓降仍較低,因為所有二極管都被同步整流器取代了。Q1和Q2像在普通升壓轉(zhuǎn)換器中一樣在高頻下開關(guān),而Q3和Q4以線路頻率交替導電,因此只有它們的導電損耗會產(chǎn)生重要影響。


必須選擇PFC級導電模式

設計師們可以選擇運行模式與任何升壓轉(zhuǎn)換器,這與L1中存儲的能量是否在每個周期內(nèi)完全轉(zhuǎn)移到輸出中有關(guān)。這相當于每個周期的電感電流都跌到零(斷續(xù)導電模式,DCM)或持續(xù)為正(連續(xù)導電模式,CCM)。還可以安排電路在二者的臨界線上運行(臨界導電模式,CrM),這需要開關(guān)頻率可隨著負載和線路變化而變化。這些模式有各自的優(yōu)缺點,DCM電路有軟打開開關(guān),可實現(xiàn)低損耗,但是在關(guān)閉時dV/dt相關(guān)的EMI很高,而且峰值電流電平過高,從而使得該模式不適合大功率應用。CrM有變頻運行的缺點,而且雖然CrM中的峰值電流較小,但是除非各級交錯否則它們產(chǎn)生的導電損耗仍不可接受,而各級交錯會產(chǎn)生相關(guān)成本和復雜性。CCM峰值電流最低,導電損耗也最低,但是電路采用“硬開關(guān)”方式來打開和關(guān)閉,同時經(jīng)過的電流大,這導致如果使用基于硅的功率開關(guān)可能會造成大損耗。在這些損耗中占據(jù)主要部分的是高頻升壓同步整流器體二極管的反向恢復電荷QRR和升壓開關(guān)的輸出電容COSS,該電容在每個周期中都會充電和放電。這些影響十分嚴重,以致直到不久前,在采用市面上的半導體器件的情況下,這些拓撲并不具備可行性。


寬帶隙半導體就是解決方案

碳化硅(SiC)和氮化鎵(GaN)被視為未來的功率半導體,有許多人撰文稱贊它們的低導通損耗和低開關(guān)損耗這兩種值得大力宣傳的優(yōu)點。自然而然地,可以考慮將它們用于TPPFC電路,而且它們確實讓電路變得可行。SiC MOSFET的性能比硅MOSFET好,體二極管反向恢復電荷QRR低80%或更多,輸出電容COSS也較低。然而,同步整流器導電前,在“死區(qū)時間”,體二極管的正向壓降非常高。采用SiC MOSFET時的柵極驅(qū)動偶爾也會有閾值遲滯現(xiàn)象和可變性方面的問題,而且全面增強的柵極電壓與最大絕對值之間的裕度小。


GaN器件沒有體二極管和反向恢復問題,但是為了實現(xiàn)最佳效率和低閾值電壓,柵極驅(qū)動很復雜,并伴隨虛假打開風險。GaN HEMT單元仍然相對昂貴,且適合較低的功率范圍,沒有雪崩能力。


仍是較好選擇

SiC FET是保留了SiC MOSFET最佳方面而無其缺點的器件,它是高壓SiC JFET和低壓Si-MOSFET的共源共柵組合。該器件速度快,導通電阻很低,但是柵極驅(qū)動簡單,兼容Si-MOSFET甚至IGBT電平。它的閾值電壓很高,無遲滯現(xiàn)象,距離最大絕對額定值有很好的裕度。該器件具有由低壓Si-MOSFET定義的體二極管效應,QRR極低,正向壓降僅為1.75V左右,同時輸出電容COSS也低。它具有可防止過壓的雪崩效應。


由UnitedSiC率先制造,現(xiàn)已推出第四代產(chǎn)品。第四代產(chǎn)品改進了單元密度以降低單位面積的導通電阻(RDS.A),運用銀燒結(jié)粘接和晶圓減薄技術(shù)改進了熱設計,從而盡量減小了到基片的熱阻。


只有在考慮了權(quán)衡取舍的特征后,對比SiC FET和相同器件電壓級的其他技術(shù)才有意義。因此,查看給定性能下每個晶圓的晶粒的RDS.A和RDS.EOSS(衡量如何權(quán)衡硬開關(guān)損耗和導電損耗的指標)等性能表征會很用。圖2顯示的是第四代750V UnitedSiC SiC FET器件與類似的650V SiC MOSFET器件在25°C和125°C下的對比。SiC FET的優(yōu)勢很明顯,而額定值還高100V,這很實用。

1622414866315333.png

【圖2:SiC FET與SiC MOSFET對比】


實際結(jié)果證實了SiC FET的優(yōu)勢

UnitedSiC使用額定值為750V,18毫歐,采用TO-247-4L開爾文連接封裝的第四代UJ4C075018K4S器件構(gòu)建了圖騰柱PFC級演示板。PFC級的額定值為3.6kW 85-264V交流輸入電壓和390V直流輸出電壓。兩個SiC FET用于60kHz高頻開關(guān)支路,四個28毫歐硅超結(jié)MOSFET用于“慢”支路。圖3顯示的是效率曲線,在230V交流電壓和2.5kW輸出下,效率達到99.37%的高峰。為提供更多信息,圖中還顯示了成本較低的60毫歐SiC FET器件的曲線(在每個位置并聯(lián)兩個該器件)。

1622414885414732.png

【圖3:使用SiC FET的3.6kW圖騰柱PFC級的效率】


在對成本非常敏感的應用中,圖1中的Q3和Q4可以替換成標準硅二極管,這樣,在描述的演示板中,效率仍能超過99%。如果采用橋式整流器,則最好多使用兩個二極管來實現(xiàn)突波保護,防止升壓電感在啟動時瞬間飽和。


使用FET-Jet計算器可輕松選擇SiC FET

為了方便選出適合的 SiC FET,UnitedSiC提供了一種基于Web的設計工具,F(xiàn)ET-Jet計算器。這款交互工具包含用于各種拓撲的隔離和非隔離直流轉(zhuǎn)換器以及交直流轉(zhuǎn)換器的預先編程的應用電路,包括簡單的升壓PFC和圖騰柱PFC等。它也支持CCM和CrM模式。使用者可以從下拉列表中為每個應用選擇SiC FET,然后該工具會瞬間計算出整體效率、損耗(并按開關(guān)損耗和導電損耗進行分析)、結(jié)溫和當前應力水平??梢赃x擇要并聯(lián)的器件,以實現(xiàn)較高功率。如出現(xiàn)無效輸入,計算器會發(fā)出警告。該工具免費使用,且無需注冊。


圖騰柱PFC級是一種有吸引力的方法,有望實現(xiàn)更高的效率和更簡單的設計,但是直到不久前,半導體技術(shù)也未能讓它發(fā)揮出全部潛力。在SiC FET的幫助下,該電路現(xiàn)在走入了工程師們的視野,用于在交流輸入轉(zhuǎn)換器中將功耗降低至更低水平。




關(guān)鍵詞: SiC FET PFC

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉