新聞中心

EEPW首頁 > 汽車電子 > 設(shè)計(jì)應(yīng)用 > 汽車應(yīng)用中磁阻傳感器系統(tǒng)的建模和仿真

汽車應(yīng)用中磁阻傳感器系統(tǒng)的建模和仿真

作者: 時(shí)間:2011-03-25 來源:網(wǎng)絡(luò) 收藏

磁阻效應(yīng)支持汽車內(nèi)的多種傳感器應(yīng)用。主要用來測(cè)量機(jī)械的速度和角度。這樣,就成為電氣元件、磁性元件和機(jī)械元件所組成的復(fù)雜的一部分。因?yàn)樗性紩?huì)影響的反應(yīng),所以在規(guī)劃系統(tǒng)及其操作時(shí)要非常重視對(duì)整個(gè)系統(tǒng)的仿真。下面重點(diǎn)討論這種系統(tǒng)的。

本文引用地址:http://2s4d.com/article/197484.htm

  電子技術(shù)的應(yīng)用日益廣泛,對(duì)汽車的發(fā)展具有決定性的促進(jìn)作用。未來的進(jìn)一步發(fā)展也會(huì)在很大程度上由不斷創(chuàng)新的電子元件驅(qū)動(dòng)。傳感器技術(shù)可檢測(cè)車輛及其周圍環(huán)境條件,因此具有特殊意義。有多種傳感器系統(tǒng)可用于此類目的,例如加速度傳感器、溫度傳感器或轉(zhuǎn)矩傳感器等。磁場(chǎng)測(cè)量傳感器在汽車內(nèi)尤其常見,主要用于機(jī)械變量的非接觸式檢測(cè)。通常這種傳感器通過霍爾元件,或者基于各向異性磁阻 (AMR) 效應(yīng)實(shí)現(xiàn)。與使用霍爾效應(yīng)的解決方案相比,AMR 傳感器有許多優(yōu)點(diǎn),例如抖動(dòng)更少、靈敏度更高。但在提高準(zhǔn)確性或降低整體系統(tǒng)成本方面,二者不分伯仲。除了在電子羅盤中利用測(cè)量地球磁場(chǎng)之外,尤其是借助磁場(chǎng)指示機(jī)械系統(tǒng)的運(yùn)動(dòng)和位置時(shí),可使用磁阻傳感器確定角度和速度。防滑系統(tǒng)、引擎和傳送控制都需要這種數(shù)據(jù)。產(chǎn)生磁場(chǎng)的永磁體的機(jī)械設(shè)計(jì)和選擇會(huì)在很大程度上影響測(cè)量數(shù)據(jù)的獲取。因此,在部署整個(gè)系統(tǒng)之前使用仿真技術(shù)進(jìn)行深入分析非常重要,以確保達(dá)到目標(biāo)功能并降低成本。因此,在前期開發(fā)過程中建立系統(tǒng)模型,之后用于支持后續(xù)產(chǎn)品的開發(fā),對(duì)于解決設(shè)計(jì)過程中產(chǎn)生的這類問題也能發(fā)揮重要作用。下文將探討新型速度傳感器的整體系統(tǒng)。

  

  圖 1 AMR 傳感器系統(tǒng)包含兩個(gè)封裝

  

  圖 2 各向異性磁阻效應(yīng)

  信號(hào)檢測(cè)

  現(xiàn)代傳感器系統(tǒng)主要由兩個(gè)元件組成 —基本傳感器和信號(hào)處理專用集成電路 (ASIC)(圖 1)?,F(xiàn)已證明,后來由 Lord Klevin 于 1857 年發(fā)現(xiàn)的各向異性磁阻效應(yīng)特別適用于檢測(cè)磁場(chǎng)。首先考慮通常具有多種磁疇結(jié)構(gòu)的鐵磁性材料。這些稱之為韋斯磁疇的結(jié)構(gòu),其內(nèi)部磁化的方向彼此不同。如果將這種材料平鋪為一薄層,那么磁化矢量處于材料層平面方向。另外,可較精確地假設(shè)只存在一個(gè)磁疇。當(dāng)這種元件暴露于外部磁場(chǎng)中時(shí),后者會(huì)改變內(nèi)部磁化矢量的方向。如果同時(shí)一股電流通過該元件,就會(huì)產(chǎn)生電阻(圖 2),這取決于電流和磁化之間的角度。當(dāng)電流和磁化方向彼此成直角時(shí),電阻最小,當(dāng)二者平行時(shí),電阻最大。電阻變化的大小取決于材料。鐵磁性材料的性質(zhì)也決定對(duì)溫度的依賴性。電阻最大變化為 2.2% 并且對(duì)溫度變化反應(yīng)良好的最佳合金是 81% 的鎳和 19% 的鐵組成的合金。恩智浦所有傳感器系統(tǒng)中的基本傳感器都采用這種強(qiáng)磁鐵鎳合金。在惠斯登電橋電路中單獨(dú)配置幾個(gè) AMR 電阻,以增強(qiáng)輸出信號(hào)并改善溫度反應(yīng)特性。此電路也可在制造過程中進(jìn)行微調(diào)。圖 3 顯示如何在裸片上配置 AMR 元件。

  確定速度的裝置多半由兩個(gè)組件組成:編碼器輪和傳感器系統(tǒng)。編碼器輪可以是主動(dòng)式或被動(dòng)式。主動(dòng)輪已磁化,因此 MR 傳感器可檢測(cè)北極和南極之間的變化。如果是被動(dòng)輪,則由一種齒狀結(jié)構(gòu)代替磁化。如圖 1 所示,傳感器頭上也必須有一塊用于產(chǎn)生磁場(chǎng)的永磁體。接下來,我們只討論因公差極小而著稱的被動(dòng)編碼器輪。當(dāng)傳感器對(duì)稱地面對(duì)一個(gè)齒或者被動(dòng)輪兩齒之間的空隙時(shí),這不會(huì)使 AMR 元件的磁化矢量產(chǎn)生任何偏斜。忽略外部噪聲場(chǎng)并考慮橋電路時(shí),輸出信號(hào)獲得零值。然而,如果傳感器頭處于齒邊緣前面,則磁輸入信號(hào)達(dá)到極值。齒/空隙或空隙/齒切換類型的函數(shù)結(jié)果與磁輸入信號(hào)正弦曲線的最小值或最大值非常接近。

  信號(hào)處理

  為了確定速度,將磁輸入信號(hào)編碼處理為電脈沖序列,而且通常通過 7/14 mA 協(xié)議傳送。在最簡(jiǎn)單的情況下,可使用比較器產(chǎn)生脈沖序列。通常會(huì)向比較器電路添加磁滯以消除低噪聲的影響。然而,這種施密特觸發(fā)器在噪聲水平較高的條件下不能確保其功能性。例如,傳感器頭和編碼器輪之間空隙出現(xiàn)顯著波動(dòng)會(huì)導(dǎo)致磁輸入信號(hào)振幅發(fā)生波動(dòng)。如果振幅變得很小,甚至不再超過或低于磁滯臨界值,則不管編碼器輪的位置如何,輸出信號(hào)都保持其有效工作時(shí)的最后狀態(tài)。在檢測(cè) ABS 系統(tǒng)中的轉(zhuǎn)速時(shí),傳感器和編碼器輪之間的距離可能會(huì)出現(xiàn)這種變化。當(dāng)存在負(fù)載變化(例如突然轉(zhuǎn)向動(dòng)作),橫向作用于輪上的離心力會(huì)在輪軸上產(chǎn)生彎曲力矩。這將改變安裝在與傳感器相關(guān)的軸上的編碼器輪的位置,這些傳感器是與輪懸架相結(jié)合的。

  磁位移也會(huì)影響系統(tǒng)的正常運(yùn)轉(zhuǎn)。例如,噪聲場(chǎng)可使實(shí)際測(cè)量信號(hào)加強(qiáng)或減弱,致使施密特觸發(fā)器的臨界值被高估或低估。然而,位移不僅是由外部場(chǎng)引起的。被動(dòng)輪極高的速度可使輪中產(chǎn)生渦流,而這又會(huì)產(chǎn)生磁噪聲場(chǎng)。所產(chǎn)生的位移會(huì)影響操作的可靠性。

  為消除此噪聲對(duì)輸出信號(hào)的影響,另一封裝中裝入了信號(hào)處理專用集成電路(ASIC)。后者也包含一個(gè)線路驅(qū)動(dòng)器,以便為信號(hào)處理和高電壓接口提供電源電壓(圖 1)。圖 4 所示為信號(hào)處理架構(gòu)。用于故障排除的中心元件為包括調(diào)式放大器、偏移抵消電路和智能比較器。根據(jù)傳感器和編碼器輪之間的距離,可調(diào)式放大器可以與信號(hào)級(jí)匹配。對(duì)于偏移抵消電路,有一種控制系統(tǒng)(與高通濾波器不同)可消除偏移,同時(shí)將系統(tǒng)頻率保持為 0?Hz。否則,就不可能檢測(cè)到停止不動(dòng)的編碼器輪。智能比較器的臨界值是可變的,并且可設(shè)置,使磁滯處于信號(hào)振幅的 20% 和 45% 之間。這可確保充分抑制噪聲,而且振幅突降達(dá) 50% 也不會(huì)影響系統(tǒng)的正常運(yùn)轉(zhuǎn)。模擬前端的個(gè)別組件控制則通過數(shù)字接口實(shí)現(xiàn)。所述系統(tǒng)均利用仿真技術(shù)開發(fā)和驗(yàn)證。下文將概略介紹系統(tǒng)開發(fā),同時(shí)闡述如何使用模型來改進(jìn)設(shè)計(jì)。

  

  圖 3 裸片上的 AMR 元件配置

  

  圖 4 現(xiàn)代速度傳感器的信號(hào)處理原理


上一頁 1 2 3 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉