高精度數(shù)模轉(zhuǎn)換器的選擇和使用
很多應用 (包括精密儀器、工業(yè)自動化、醫(yī)療設備和自動測試設備) 都需要高準確度數(shù)模轉(zhuǎn)換。在 16 位分辨率時要求準確度好于約 ±15ppm 或 ±1LSB 的電路中,設計師傳統(tǒng)上一直被迫使用大量校準,以在所有情況下保持準確度。新型高精度 DAC 使得能夠采用一個單片式 DAC 來實現(xiàn) ±4ppm 準確度或 ±1LSB (在 18 位分辨率條件下),而無需校準。在本文中我們將對高精度數(shù)模轉(zhuǎn)換器的選擇和使用過程中所涉及的問題進行研究。
本文引用地址:http://2s4d.com/article/185711.htmDAC 的架構(gòu)對于 DAC 的技術(shù)規(guī)格及其對電路板設計師的要求均有影響。為了實現(xiàn)最佳性能,需要謹慎地考慮 DAC 上的電源、基準和輸出放大器所產(chǎn)生的影響。
過采樣或增量累加 DAC
過采樣或 ΔΣ ADC 采用一個低分辨率 DAC (通常僅 1 位),在其前后分別布設一個噪聲整形數(shù)字調(diào)制器和一個模擬低通濾波器。最準確的商用增量累加 DAC 實現(xiàn) ±15ppm 的準確度,但是需要 15ms 才能穩(wěn)定,并要承受相對較高的 1μV/√Hz 噪聲密度。其它可購得的過采樣 DAC 在 80us 內(nèi)穩(wěn)定,但是 INL 較差,大約為 240 ppm。
合成 DAC
通過結(jié)合兩個較低分辨率的單片 DAC,有可能構(gòu)成一個高分辨率的合成 DAC。請注意,粗略 DAC 的分辨率和精細 DAC 的范圍需要重疊,以確保所有想要的輸出電壓都可實現(xiàn)。粗略 DAC 的準確度和漂移一般將限制合成 DAC 的最終準確度,因此要提高準確度,就需要對合成 DAC 轉(zhuǎn)移函數(shù)的特性和軟件進行校正。也可能需要頻率校準,以校正隨溫度、時間、濕度和機械壓力產(chǎn)生的變化導致的漂移。
電阻串 DAC
電阻串 DAC 采用具有 2N 個分接點的一系列電阻分壓器,以實現(xiàn) N 位分辨率。采用電阻串架構(gòu)的單片 16 位 DAC 一般含有一個較低分辨率的電阻串 DAC 和一個范圍較小的 DAC,范圍較小的 DAC 用于插入串器件之間,以實現(xiàn) 16 位分辨率。這種串+內(nèi)插器方法的一個優(yōu)點是,DAC 輸出具有固有的單調(diào)性,無需微調(diào)或校準。
這類 DAC 的基準輸入阻抗一般很高 (50KΩ~ 300kΩ),而且不受輸入代碼的影響,從而有可能使用一個非緩沖型基準。因為電阻串的輸出阻抗隨輸入代碼變化,所以大多數(shù)電阻串 DAC 含有集成的輸出緩沖器放大器,以驅(qū)動電阻性負載。
盡管電阻串 DAC 的 DNL 本身非常好,但是 INL 由串聯(lián)電阻器件的匹配決定,而且可能由于含有大量的獨立器件而難以控制。直到最近,這類 DAC 的準確度一直限制在約 ±180ppm。最近的進步已經(jīng)使得準確度提高到了 ±60ppm。例如,LTC2656 在 4mm x 5mm 封裝中集成了 8 個 DAC 通道,在 16 位分辨率時具有 ±4LSB 的最大 INL。
阻性梯形或 R-2R 型 DAC
阻性梯形或 R-2R DAC 采用一種類似于圖 2 所示的三端子結(jié)構(gòu),電阻器在 A 端和 B 端之間切換。請注意,A 端和 B 端上的阻抗與代碼的相關(guān)性很高,而 C 端則具有一個固定阻抗。電阻器與開關(guān)的匹配情況將會影響這種結(jié)構(gòu)的單調(diào)性和準確度。此類 DAC 一般經(jīng)過修整或在出廠時經(jīng)過校準,而且,具 ±1LSB INL 和 DNL 的單調(diào) 16 位阻性梯形電路 DAC 上市已有很長時間了。
電壓輸出 R-2R DAC
一種常見類型的 R-2R DAC 將C 端用作 DAC 輸出電壓,而 A 端連接到基準,B 端連接到地。輸出阻抗相對于輸入代碼是恒定的,從而有可能以非緩沖方式驅(qū)動電阻負載。例如,LTC2641 16 位 DAC 能以非緩沖方式驅(qū)動 60kΩ 負載,同時保持 ±1LSB 的 INL 和 DNL,并消耗不到 200μA 的電源電流。
這種方法的一個缺點是,基準阻抗隨著輸入代碼大幅變化。由于 R-2R 梯形電路的本質(zhì),甚至 DAC 輸出電壓中很小的變化也可能在基準電流中引起 1mA 或更大的階躍變化。為此,必須由一個高性能放大器來對基準進行緩沖,并采用一種非常精細和針對性的檢測電路布局,以限制穩(wěn)定、干擾脈沖和線性度性能的最終劣化。
當一個輸出緩沖器放大器和一個電壓輸出 R-2R DAC 一起使用時,該放大器的開環(huán)增益和大信號共模抑制必須足夠高,以保持輸出的線性度 (在 18 位時 >110dB)。輸出緩沖器的失調(diào)和輸入偏置電流將主要以 DAC 輸出偏移的形式出現(xiàn),但是這些參數(shù)在輸入共模范圍內(nèi)的任何變化都將以附加的 INL 誤差形式出現(xiàn)。
請注意,在正和負基準開關(guān)之間有必要保持匹配的阻抗,以保持 DAC 線性度。因為 CMOS 開關(guān)阻抗是電壓和溫度的函數(shù),因此這給 DAC 的準確度帶來了挑戰(zhàn),尤其是在低電源電壓時??刹捎眠@種架構(gòu)的 18 位 DAC 的 PSRR 被限制在約 64dB。結(jié)果,隨著時間、溫度、電壓和負載狀況的變化,電源必須在約 0.5% 的范圍內(nèi)保持恒定,以保持 18 位性能。在工作溫度范圍內(nèi),這類 DAC 的 INL 可以預期以 ±0.5LSB 或更大的幅度漂移。
迄今為止,當采用一個5V電源時,運用該架構(gòu)和一個集成輸出放大器的18位DAC的性能一直被限制為±2LSB INL(在18位)。采用3V電源時,其性能將進一步限制為±3LSB INL(在18位),且單調(diào)性下降至 17位。
評論