新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 基于UC38 75的ZVZCS PWM軟開關直流電源的研制

基于UC38 75的ZVZCS PWM軟開關直流電源的研制

作者: 時間:2009-02-23 來源:網(wǎng)絡 收藏
目前,中、大功率電源的主回路基本上都是采用全橋變換器結(jié)構(gòu),其相應的軟工作方式有三種,即零電壓(ZVS)、零電流開關(ZCS)和零電壓零電流開關()。ZVS工作模式下全橋變換器的滯后臂不易實現(xiàn)零電壓開關且存在變壓器副邊電壓占空比丟失,ZCS工作模式下全橋變換器的滯后臂不易實現(xiàn)零電流開關且存在變壓器副邊輸出電流占空比丟失,這兩種電路拓撲自身的局限限制了其進一步發(fā)展的空間,雖然采用輔助電路在一定程度可以改善其特性,但是增加了元器件和電路的復雜性,而且在高頻下還會引入干擾。軟開關工作模式基本上克服了ZVS和ZCS軟開關模式的固有缺陷,使全橋變換器的超前臂實現(xiàn)ZVS,而滯后臂實現(xiàn)ZCS,在中、大功率開關電源中具有廣闊的應用前景。為此,本文介紹了一臺采用移相諧振控制芯片75作為控制核心設計的開關頻率為70kHz、輸出功率1.2kW、主電路為移相全橋 軟開關模式的直流開關電源。

l 移相式ZVZCS軟開關電源主電路分析
在設計制作的1.2kW(480V/2.5A)的軟開關中,其主電路為全橋變換器結(jié)構(gòu),四只開關管均為MOSFET(1000V/24A),采用移相ZVZCS控制,即超前臂開關管實現(xiàn)ZVS、滯后臂開關管實現(xiàn)ZCS,電路結(jié)構(gòu)簡圖如圖l,VT1~VT4是全橋變換器的四只MOSFET開關管,VD1、VD2分別是超前臂開關管VT1、VT2的反并超快恢復二極管,C1、C2分別是為了實現(xiàn)VTl、VT2的ZVS設置的高頻電容,VD3、VD4是反向電流阻斷二極管,以實現(xiàn)滯后臂VT3、VT4的ZCS,Llk為變壓器漏感,Cb為阻斷電容,T為主變壓器,副邊由VD5~VD8構(gòu)成的高頻整流電路以及Lf、C3、C4等濾波器件組成。
其基本工作原理如下:
當開關管VT1、VT4或VT2、VT3同時導通時,電路工作情況與全橋變換器的硬開關工作模式情況一樣,主變壓器原邊向負載提供能量。通過移相控制,在關斷VT1時并不馬上關斷VT4,而是根據(jù)輸出反饋信號決定的移相角,經(jīng)過一定時間后再關斷VT4,在關斷VT1之前,由于VT1導通,其并聯(lián)電容C1上電壓等于VT1的導通壓降,理想狀況下其值為零,當關斷VT1時刻,C1開始充電,由于電容電壓不能突變,因此,VT1即是零電壓關斷。

本文引用地址:http://2s4d.com/article/181471.htm

由于變壓器漏感L1k以及副邊整流濾波電感的作用,VT1關斷后,原邊電流不能突變,繼續(xù)給Cb充電,同時C2也通過原邊放電,當C2電壓降到零后,VD2自然導通,這時開通VT2,則VT2即是零電壓開通。
當C1充滿電、C2放電完畢后,由于VD2是導通的,此時加在變壓器原邊繞組和漏感上的電壓為阻斷電容Cb兩端電壓,原邊電流開始減小,但繼續(xù)給Cb充電,直到原邊電流為零,這時由于VD4的阻斷作用,電容Cb不能通過VT2、VT4、VD4進行放電,Cb兩端電壓維持不變,這時流過VT4電流為零,關斷VT4即是零電流關斷。
關斷VT4以后,經(jīng)過預先設置的死區(qū)時間后開通VT3,由于電壓器漏感的存在,原邊電流不能突變,因此VT3即是零電流開通。
VT2、VT3同時導通后原邊向負載提供能量,一定時間后關斷VT2,由于C2的存在,VT2是零電壓關斷,如同前面分析,原邊電流這時不能突變,C1經(jīng)過VD3、VT3、Cb放電完畢后,VD1自然導通,此時開通VT1即是零電壓開通,由于VD3的阻斷,原邊電流降為零以后,關斷VT3,則VT3即是零電流關斷,經(jīng)過預選設置好的死區(qū)時間延遲后開通VT4,由于變壓器漏感及副邊濾波電感的作用,原邊電流不能突變,VT4即是零電流開通。
這種采用超快恢復二極管阻斷原邊反向電流方式的移相式ZVZCS PWM全橋變換器拓撲的理想工作波形如圖2所示,其中Uab表示主電路圖3中a、b兩點之間的電壓,ip為變壓器T原邊電流,Ucb為阻斷電容Ub上的電壓,Urect是副邊整流后的電壓。

2 75的主控制回路設計
為了實現(xiàn)主回路開關管ZVZCS軟開關,采用75為其設計了PWM移相控制電路,如圖3所示??紤]到所選MOSFET功率比較大對芯片的四個輸出驅(qū)動信號進行了功率放大,再經(jīng)高頻脈沖變壓器T1、T2隔離最后經(jīng)過驅(qū)動電路驅(qū)動MOSFET開關管。整個控制系統(tǒng)所有供電均用同一個15V,實驗中設置開關頻率為70kHz,死區(qū)時間設置為1.5μs,采用簡單的電壓控制模式,電源輸出直流電壓通過采樣電路、光電隔離電路后形成控制信號,輸入到UC3875誤差放大器的EA一,控制UC3875誤差放大器的輸出,從而控制芯片四個輸出之間的移相角大小,使電源能夠穩(wěn)定工作,圖中R6、C5接在EA一和E/AOUT之間構(gòu)成PI控制。在本設計中把CS+端用作故障保護電路,當發(fā)生輸出過壓、輸出過流、高頻變原邊過流、開關管過熱等故障時,通過一定的轉(zhuǎn)換電路,把故障信號轉(zhuǎn)換為高于2.5V的電壓接到CS+端,使UC3875四個輸出驅(qū)動信號全為低電平,對電路實現(xiàn)保護。
圖4是開關管的驅(qū)動電路。隔離變壓器的設計采用AP法、變比為l:1.3的三繞組變壓器。UC3875輸出的單極性脈沖經(jīng)過放大電路、隔離電路和驅(qū)動電路后形成+12V/一5V的雙極性驅(qū)動脈沖,保證開關管的穩(wěn)定開通和關斷。

pwm相關文章:pwm原理



上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉