在高清圖像處理中FPGA的作用
從模擬廣播向數(shù)字廣播的轉變?yōu)闃I(yè)界提供了令人振奮的新服務和掙錢機會,而OEM廠商之間為生產(chǎn)更有價格吸引力的系統(tǒng)而進行的競爭也非常激烈。然而,正如許多其它技術轉變時所面臨的情況一樣,各個企業(yè)為競爭市場領導地位提出了許多新的建議標準。無論標準團體如何努力保證互操作性和公平競爭,第一個成功上市的產(chǎn)品都很可能會變成事實上的標準。即使是標準團體成功發(fā)布的國際上得到承認的標準,經(jīng)常也會由于試圖滿足眾多成員公司的需要而存在許多不同的版本。除此之外,不可避免地會對標準進行許多修正,如在早期階段的現(xiàn)場測試反饋之后,或在后期階段有新的算法或增強提出來時。因此很容易發(fā)現(xiàn)為什么一個完全可重新編程的解決方案是如此有吸引力。
本文引用地址:http://2s4d.com/article/148362.htm“Table 3”是在業(yè)界等到公認的美國高級電信標準協(xié)議(STSC)定義的廣播格式一覽表。正如表中所看到的那樣,設備制造商可進行眾多的選擇-高分辨率(HD)還是標準分辨率(SD),16:9還是4:3,逐行還是隔行掃描等。雖然也有ASSP(特定應用標準產(chǎn)品),但經(jīng)常是每種標準需要不同的芯片。FPGA解決方案可容易地支持超過HDTV要求的數(shù)據(jù)傳輸速率,這意味著一個器件可以支持所有這些格式,只需要根據(jù)設備的需要進行重新編程就可以了。這可減少企業(yè)的用料清單項目,同時還排除了ASSP供應商可能存在的供貨風險。
需要進行標準選擇的另一個例子是色彩空間變換。圖像從照相機采集進來以后就利用壓縮算法對其進行處理,再通過后期制作直到在電視機顯示出來的過程中也是如此。壓縮算法利用了這樣的事實,即不必傳輸一幅圖像的所有色彩信息就可得到滿意的效果。以RGB(紅、綠、藍)格式進行圖像處理是可行的。在RGB格式中,每一像素以對應每一原色的三個8或10位字來定義。但由于人眼對光線頻譜中某些部分比其它部分反應要小,因此可以利用亮度或(Y)以及色差信號(如CrCb)來表示圖像。這樣做的好處是需要較小的存儲和數(shù)據(jù)帶寬。因此需要一種機制來進行不同色彩格式間的轉換,這也稱為色彩空間變換。一旦知道從一個色彩空間向另一個色彩空間映射的系數(shù),用硬件實現(xiàn)這些電路就非常簡單。
例如,在數(shù)字電視系統(tǒng)中,YerCb色彩空間可按下式轉換至RGB色彩空間:
R' = 1.164 (Y-16) + 1.596(Cr -128)
G' = 1.164 (Y-16) - 0.813 (Cr -128) - 0.392(Cb-128)
B' = 1.164 (Y-16) + 1.596 (Cr-128)
其中R'G'B'是伽馬(Gamma)校正RGB數(shù)值。由于CRT顯示器中,接收到的控制信號幅度和輸出強度間是非線性關系。顯示器前的伽馬校正信號可使接收信號幅度和輸出強度的關系線性化。輸出增益也限制在一定的閾值,從而降低圖像暗部由于傳輸引入的噪聲。有多種可能的實現(xiàn)方法,可利用存儲器、邏輯或嵌入式乘法器在FPGA中實現(xiàn)所需的乘法功能。
當需要在大量色彩空間之間進行轉換選擇時,采用可編程色彩空間變換器的優(yōu)點非常明顯。正如此處所示的YCrCb 與RGB變換一樣,YUV以及YPrPb 采用與此類似的算法,只是系數(shù)有所不同。雖然有標準的色彩空間,但不同設備間的要求有許多不同的地方。高分辨率圖片甚至采用與標準定義不同的色彩空間,但具有可編程的變換系數(shù)的設備可以容易地支持任何輸入分辨率。同時如果需要的話,多通道色彩空間變換支持也可以做到,而如果不采用可編程邏輯的話,這通常需要多塊ASSP。當然,利用FPGA器件,系統(tǒng)架構還可根據(jù)應用調整相應的算法,從而使性能、效率或兩者同時實現(xiàn)最大化。
FPGA經(jīng)常被大型數(shù)據(jù)和電信企業(yè)廣泛用作網(wǎng)絡接口設備??删幊碳軜嫹浅_m合協(xié)議管理和數(shù)據(jù)流格式處理,而FPGA提供的高速差分I/O如LVDS,使FPGA可以非常快的速度向片上讀入和向片外輸出數(shù)據(jù)。FPGA還可用于局域環(huán)境,如家庭網(wǎng)絡。歐洲DVB(數(shù)字電視廣播)聯(lián)盟最近采用IEEE1394高速串行總線作為數(shù)字電視產(chǎn)品的標準連接方式。無線標準,如IEEE802.11 和 HiperLAN2也被提議作為擁有多臺電視的家庭網(wǎng)絡的連接方案。
隨著世界許多地區(qū)高分辨率廣播的出現(xiàn),視頻信號處理要求極大地提高了。例如,采用1920×1080分辨率、24位像素和每秒30幀逐行掃描的高分辨率電視機將需要約1.5Gbps的總的未壓縮帶寬。即使在還沒有實際進行高分辨率圖像廣播的地區(qū),在直到后期制作的所有階段中,采用的也是高分辨率圖像。
現(xiàn)在最新的可編程邏輯器件具有多個可支持此類數(shù)據(jù)速率的LVDS(低壓差分信號)I/O,即使在針對消費市場的低成本器件中也有這樣的I/O支持。這意味著未壓縮的視頻數(shù)據(jù)可輸入和輸出器件并進行實時處理。HDTV速率一級的實時視頻處理允許設計人員減少需要的外部存儲器數(shù)量。目前,由于在設計中視頻信號處理器部分成為瓶頸,因此現(xiàn)有的數(shù)字電視系統(tǒng)中經(jīng)常采用多個幀存儲和數(shù)據(jù)緩沖器。利用FGPA的并行信號處理能力意味著更小的,甚至單幀存儲即可,而數(shù)據(jù)緩沖器則可完全省掉。標準DSP在性能方面的局限導致不得不開發(fā)更為專用的芯片,如媒體處理器,來克服這些問題。然而,事實證明這些器件除了在范圍極窄的一些應用中,都有太不靈活的缺點,同時還有性能瓶頸存在。而FPGA器件則可以通過定制,在利用率和性能方面提供最大的效率。設計人員還可以在設計面積和速度之間進行折衷,并且可以比DSP低得多的時鐘速率完成給定的功能。
如前所述,F(xiàn)PGA過去僅用于專業(yè)的廣播系統(tǒng)中,但摩爾定律意味著他們正逐漸應用于大批量消費產(chǎn)品中。以數(shù)字電視為例,其中機頂盒功能完全集成到電視中,因此數(shù)字電視可接收數(shù)字廣播。通常這都是通過標準天線接收免費的無線信號,但未來的產(chǎn)品將允許接收來自有線電纜、衛(wèi)星或DSL線路傳輸?shù)男盘枴PGA可應用于數(shù)字電視機內的許多部分,如圖1所示。做為標準芯片組間的“聯(lián)結邏輯(glue logic)”一起是FPGA的強項,但許多圖像處理任務(如色彩空間變換)以及網(wǎng)絡接口(如IEEE 1394)現(xiàn)在也可在低成本可編程邏輯器件內實現(xiàn)。
這一將圖像處理任務用FPGA完成的趨勢有一個重要驅動力:來自業(yè)界所稱的“數(shù)字融合”。目前產(chǎn)生了這樣一些需求,即通過極為有限的傳輸信道(如無線)發(fā)送大帶寬的視頻數(shù)據(jù),同時還要保持可接受的服務質量(QoS)。這導致對如何改善錯誤校正算法、壓縮和圖像處理技術進行范圍更為廣泛的研究,而其中相當一部分工作是圍繞利用FPGA器件進行的。
采用FPGA,設計人員可以使自己的標準兼容的系統(tǒng)與競爭對手的產(chǎn)品保持差異化。以MPEG-2壓縮方案為例,可以將MPEG處理器負責的MPEG標準算法中的DCT(離散余弦變換)部分卸載至FPGA器件中進行處理,從而增加帶寬。DCT及其反變換可利用FPGA高效地實現(xiàn),而且已經(jīng)有經(jīng)過優(yōu)化的IP核可直接應用到基于MPEG的設計之中。但MPEG編碼方案中還有許多未定義的模塊(如運動預測)。通過在FPGA結構中集成用于這些模塊的專有技術和標準的象DCT這樣的功能,就可以創(chuàng)造出可提高處理帶寬并達到更高圖像質量的低成本的單片解決方案。通過避免系統(tǒng)僅依賴于標準ASSP解決方案,企業(yè)就不再會有被市場認為僅能提供有限的幾種類似解決方案的危險。
FPGA還可使您的產(chǎn)品更快地推向市場,并可在現(xiàn)場安裝后保持為您產(chǎn)生更多營收的能力。多數(shù)FPGA都基于SRAM技術,從而在開發(fā)的各個階段都可以容易地對器件進行重新編程。這使系統(tǒng)的調試更為簡單,而且還意味著如果需要的話,微小的改變也可容易地整合到產(chǎn)品中去。這有可能會由于客戶要求的改變,也由可能是由于標準的新版本或修正。
評論