新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 晶閘管控制串聯(lián)電容器應用于彈性交流輸電系統(tǒng)的穩(wěn)定度分析

晶閘管控制串聯(lián)電容器應用于彈性交流輸電系統(tǒng)的穩(wěn)定度分析

作者:任磊 李媛媛 時間:2015-12-28 來源:電子產品世界 收藏
編者按:彈性交流輸電系統(tǒng)設備,如晶閘管控制串聯(lián)電容器(TCSC)、制動電阻、并聯(lián)電容電抗與靜態(tài)移相器被用來動態(tài)調整網絡配置,以提高系統(tǒng)的靜態(tài)特性和暫態(tài)穩(wěn)定度。現代電力系統(tǒng)龐大而復雜,擾動常改變電網結構并導致非線性響應。本文采用晶閘管控制串聯(lián)電容器提高電力系統(tǒng)動態(tài)穩(wěn)定度,晶閘管控制串聯(lián)電容器的阻抗由輔助進相-遲相控制器根據發(fā)電機速度偏差進行調整,輔助控制器參數由基于模態(tài)控制理論的極點指定法來確定。針對指定的操作點設計控制器,探討系統(tǒng)在不同加載條件下,不同功率因數,端電壓下的閉環(huán)特征值靈敏度。并對具有輔助進相-遲相控

  針對特定操作點設計的控制器,討論控制器的適應性和適用范圍,針對系統(tǒng)在不同發(fā)電機輸出功率、端電壓、功率因數的低頻振蕩模式與發(fā)電機特征值分別列于表2-表4。由表2可以看出,低頻振蕩模式因發(fā)電機負載增加而造成阻尼降低。另外由表3可以看出端電壓越高時,系統(tǒng)的阻尼越好。由表4可以看出未加入TCSC前,發(fā)電機低頻振蕩模式隨功率因數的增加而阻尼變差;加入TCSC后,發(fā)電機特征值特性未變,低頻振蕩模式則隨功率因數的增加阻尼變得更好。

本文引用地址:http://2s4d.com/article/284994.htm

4 時域模擬分析

  特征值分析是在指定的操作點,對非線性系統(tǒng)作線性化后,分析其特征值,適合于小信號分析。由于電力系統(tǒng)有很多限制器和飽和現象,如勵磁機、TCSC等,所以需利用非線性微分方程作時域計算機模擬,以驗證TCSC與系統(tǒng)動態(tài)特性是否與特征值分析結果一致。

  首先,機組在0.2 s時,突然有0.1 pu的機械轉矩加入,持續(xù)100ms后恢復,未加TCSC前的動態(tài)響應如圖6所示,系統(tǒng)狀態(tài)不穩(wěn)定;加入TCSC與設計的進相-遲相控制器后,系統(tǒng)的動態(tài)響應如圖7所示,并于未加TCSC的動態(tài)響應進行對比,可以看出TCSC能夠抑制機電模式低頻振蕩的效果。相反圖8、圖9為機組在0.2s時,突然降低0.1pu的機械轉矩,持續(xù)100 ms后恢復,未加TCSC與加入TCSC與控制器后的系統(tǒng)動態(tài)響應圖??芍徽摍C組在加速或減速擾動下,TCSC結合控制器均能有效抑制系統(tǒng)的低頻振蕩,提高系統(tǒng)的。

  另一種狀態(tài)下,輸電線路2發(fā)生斷線擾動,輸電線路2在0.2 s時并聯(lián)的雙線中的一條線跳脫,持續(xù)100 ms后恢復,未加TCSC前的動態(tài)響應如圖10所示,系統(tǒng)狀態(tài)不穩(wěn)定;加入TCSC與設計的進相-遲相控制器后,系統(tǒng)的動態(tài)響應如圖11所示,可認為TCSC抑制了機電模式的低頻振蕩效果。

  特征值分析與動態(tài)模擬結果表明:TCSC在穩(wěn)態(tài)下,可降低傳輸線阻抗,提高傳輸線的功率輸送量。加入適當的控制器和適當的控制法則后,TCSC不僅能提高電能輸送量,還能提高系統(tǒng)的穩(wěn)定度。從動態(tài)模擬中可看出,雖然TCSC的阻抗變動在動態(tài)下存在上下限值,但仍可有效抑制低頻振蕩。

5 結論

  本文研究TCSC對電力系統(tǒng)中低頻振蕩的抑制及對電力系統(tǒng)穩(wěn)定度的提高。TCSC結構選擇適當的模型,并將其加入電力系統(tǒng)模型中,由特征值分析與非線性動態(tài)模擬可知:TCSC不僅可以降低輸電線路阻抗,提高輸電線容量,加入適當的控制器可有效抑制電力系統(tǒng)低頻振蕩,提高系統(tǒng)穩(wěn)定度。

  根據本研究獲得的初步結論,后續(xù)的研究應對多機電力系統(tǒng)中,TCSC裝設的位置與效果,以及容量和位置等關系進行研究。除此之外,研究多機電力系統(tǒng)中,TCSC的控制法則,包括選擇反饋信號與控制器形態(tài),將TCSC研究成果應用于電力系統(tǒng),為TCSC用于奠定理論基礎。

  附錄:系統(tǒng)參數

  (1) 發(fā)電機和輸電線路

  MG=6.44 DG=1.5 RA=0.0

  Xd=1.93 Xq=1.74 X’d=0.47

  X’q=0.47 T’d0=6.66 T’q0=0.44

  Re=0.0 XL1=0.8 XL2=0.8

  勵磁機和調壓器

  KA=400 TA=0.02 KEX=1.0

  TEX=1.0 KF=0.06 TF=1.0

  AEX=0.098 BEX=0.553

  VRmax=7.3pu VRmin=-7.3pu

  (2)

  Xr=-0.1pu TT=0.015s

  XTmax=0.0pu XTmin=-0.2pu

  (3) 初始操作狀態(tài)

  PG=0.9pu PF=0.9 Xf=-0.1

參考文獻:

  [1]N.H. Hingorani. High Power Electronics and Flexible AC Transmission Systems [J]. IEEE Power Eng. Rev., 1998: 3-4

  [2]N.H. Hingorani. High Power Electronics and Flexible AC Transmission Systems [C]. Presented at international symposium on Electric Energy Conversion in Power Systems, Capri, 1989

  [3]S.L. Nilsson. Security Aspects of Flexible AC Transmission System Controller Applications [J]. Electric Power Energy System, 1995, 17(3):173-179

  [4]M.R. Mohan, R.K. Varma. 基于晶閘管的柔性交流輸電控制裝置 [M]. 徐政, 譯. 北京: 機械工業(yè)出版社, 2005

  [5]栗時平, 劉桂英. 靜止無功功率補償技術 [M]. 北京: 中國電力出版社, 2006

  [6]何大愚. 柔性交流輸電技術和用戶電力技術的新發(fā)展 [J]. 電力系統(tǒng)自動化, 1999

  [7]程漢湘. 柔性交流輸電系統(tǒng) [M]. 北京: 機械工業(yè)出版社, 2009, 229-230


本文來源于中國科技期刊《電子產品世界》2016年第1期第54頁,歡迎您寫論文時引用,并注明出處。


上一頁 1 2 下一頁

評論


技術專區(qū)

關閉