一種利用多單元串聯(lián)大功率逆變電源的控制方法
自九十年代初以來,多電平逆變器在高電壓、大功率領域得到越來越廣泛的應用。多電平變換器有三種基本的拓撲結構:二極管嵌位型、飛跨電容型、多單元串聯(lián)型。相比較而言,多單元串聯(lián)型有如下幾個主要的優(yōu)點:
本文引用地址:http://2s4d.com/article/226568.htm1) 逆變器結構基于傳統(tǒng)的兩電平逆變器單元,因此主電路拓撲結構非常簡單。
2) 功率單元采用模塊化結構,因此所有功率單元可以互換,維修非常方便,電路中也不存在大量的嵌位二極管或電壓平衡電容器。
3) 每一個逆變橋是由相互獨立的直流電壓源供電,不存在中性點電壓不平衡問題。
本文針對大功率逆變電源,采用多單元串聯(lián)技術,把單個功率單元的二重化控制技術與水平移相式PWM技術相結合,既降低了對開關器件電壓等級的要求,滿足了系統(tǒng)對輸出電壓及輸出功率的要求,又獲得了比單純多單元串聯(lián)技術更高的等效開關頻率,大大降低了開關損耗,更進一步的改善了輸出波形,降低輸出電壓的諧波畸變率,而且,功率單元由電網(wǎng)電壓經(jīng)過副邊多重化的移相變壓器供電,對電網(wǎng)諧波污染小,輸入功率因數(shù)高,不必采用輸入諧波濾波器和功率因數(shù)補償裝置。
多單元串聯(lián)三相大功率逆變電源原理框圖如圖1所示,按照對輸出功率的要求,每相采用三單元串聯(lián),三相共有九組完全相同的功率單元。每相三個功率單元的載波之間互差120°,輸出相電壓為7電平,線電壓為12電平。每個功率單元承受全部的輸出電流,但只提供1/3的相電壓和1/9的輸出功率。與采用高電壓器件直接串聯(lián)的大容量逆變器相比,由于采用整個功率單元串聯(lián),器件承受的最高電壓為功率單元的直流母線電壓,可直接使用低壓功率器件,器件不必串聯(lián),不存在器件串聯(lián)引起的均壓問題。功率單元中采用的低壓IGBT功率模塊,驅(qū)動電路簡單,技術成熟可靠。改變每相功率單元的串聯(lián)個數(shù)或功率單元的輸出電壓等級,就可實現(xiàn)不同電壓等級的高壓輸出。
圖1 多單元串聯(lián)大功率逆變電源原理框圖
在圖1中,功率單元為三相輸入,單相輸出的交直交PWM電壓源型逆變器結構,圖2給出了功率單元的逆變部分電路。
圖2 功率單元逆變部分電路圖
移相變壓器副邊輸出的三相交流電經(jīng)功率單元的三相二極管整流橋整流后,經(jīng)濾波電容后形成平直的直流電,再經(jīng)由4個IGBT構成的H型單相逆變橋,輸出PWM波。為了提高開關頻率,但同時又要考慮降低開關損耗,對功率單元實行二重化PWM控制。圖3為二重化PWM控制波形圖。
圖3 二重化PWM控制波形
在圖3中,Vg1,Vg2,Vg3,Vg4分別為VT1,VT2,VT3,VT4的驅(qū)動信號,它們的導通規(guī)律如圖2所示。UAB為功率單元輸出電壓的波形圖。由圖3可知,在輸出端得到的等高不等寬的脈沖序列的基波分量就是正弦波,而且在一個開關周期內(nèi)VT1~VT4僅通斷一次,而輸出電壓為兩個脈沖, 這說明輸出電壓脈沖頻率為開關管的工作頻率的2倍。此種控制方法提高了等效的載波頻率,使輸出電壓的諧波含量。減少,降低了開關損耗。
逆變器輸出采用水平移相式PWM技術,同一相的功率單元輸出相同幅值和相位的基波電壓,但各個功率單元的載波之間互相錯開一定電角度,實現(xiàn)多電平 PWM波輸出,輸出電壓非常接近正弦波。輸出電壓每個電平臺階只有單元直流母線電壓大小,所以dV/dt很小。由于采用水平移相式PWM技術,輸出電壓的等效開關頻率大大提高,且輸出電平數(shù)增加,因此功率單元采用較低的開關頻率,以降低開關損耗,提高效率。波形圖如圖4所示。在圖4 中,UA1,UA2,UA3分別為第一功率單元、第二功率單元、第三功率單元的輸出PWM波形,UA1為三單元串聯(lián)后的PWM波形。
逆變器相關文章:逆變器原理
電容器相關文章:電容器原理
dc相關文章:dc是什么
pwm相關文章:pwm是什么
逆變器相關文章:逆變器工作原理
評論