新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 通過(guò)模擬減法消除 PWM DAC 紋波(2)

通過(guò)模擬減法消除 PWM DAC 紋波(2)

作者: 時(shí)間:2023-02-21 來(lái)源: 收藏

該電路的基本工作原理是 紋波信號(hào)電流與 信號(hào)電流的 AC 耦合(通過(guò) C2)逆向無(wú)源求和(通過(guò) R1 和 R2),然后在 DAC 輸出電容器 C1 中對(duì)求和進(jìn)行積分。由此產(chǎn)生的紋波分量的部分抵消允許足夠的紋波衰減,同時(shí)使用比單級(jí) RC 濾波器所需的濾波器時(shí)間常數(shù)短得多的時(shí)間常數(shù)。更快的響應(yīng)和更短的穩(wěn)定時(shí)間是回報(bào)。

本文引用地址:http://2s4d.com/article/202302/443540.htm


用于過(guò)濾和衰減 DAC 輸出紋波,十多年來(lái)我發(fā)現(xiàn)它非常有用。

它通過(guò) PWM 信號(hào)與其交流耦合逆信號(hào)的無(wú)源求和來(lái)工作,目的是在不影響直流分量的情況下衰減不需要的交流紋波信號(hào)分量(圖 1 )。


通過(guò)模擬減法消除 PWM DAC 紋波(2)

圖 1原始紋波減法拓?fù)洹?br/>


然而,關(guān)于這個(gè)想法如何運(yùn)作的一些更精細(xì)的細(xì)節(jié)并沒(méi)有在初的短文中得到充分探討。這是一些被省略的內(nèi)容。

該電路的基本工作原理是PWM 紋波信號(hào)電流與 PWM 信號(hào)電流的 AC 耦合(通過(guò) C2)逆向無(wú)源求和(通過(guò) R1 和 R2),然后在 DAC 輸出電容器 C1 中對(duì)求和進(jìn)行積分。由此產(chǎn)生的紋波分量的部分抵消允許足夠的紋波衰減,同時(shí)使用比單級(jí) RC 濾波器所需的濾波器時(shí)間常數(shù)短得多的時(shí)間常數(shù)。更快的響應(yīng)和更短的穩(wěn)定時(shí)間是回報(bào)。

然而,這種限制其速度的電流模式方案的一個(gè)缺點(diǎn)是,在 PWM 輸入占空比發(fā)生階躍變化后,R1 和 R2 電流的符號(hào)相反但幅度相等,因此它們的總和必須暫時(shí)為零. 因此,在 C1 沒(méi)有任何積分的情況下,DAC 輸出信號(hào)無(wú)法開(kāi)始響應(yīng)階躍,直到 C2 開(kāi)始充電,減少通過(guò) R2 的電流,使 R1 和 R2 的電流不相等,并為 C1 提供除零以外的值以進(jìn)行積分. 這種不需要的空值間隔在圖 2中顯示為輸出波形上升沿中明顯的時(shí)間延遲。

這種對(duì) DAC 響應(yīng)時(shí)間的限制似乎是電流模式求和拓?fù)洳豢杀苊獾娜秉c(diǎn)。雖然它仍然比單級(jí) RC 濾波器快(很多),但它可能不如它可以/應(yīng)該的那么快。


通過(guò)模擬減法消除 PWM DAC 紋波(2)
圖 2顯示前沿延遲的電流模式紋波減法響應(yīng)。


于是,我開(kāi)始疑惑。如果首先計(jì)算紋波和 PWM電壓而不是電流,然后相互減去以實(shí)現(xiàn)紋波抵消,會(huì)發(fā)生什么情況?能否從初的想法中榨取更多的性能,同時(shí)又不失去初使它具有吸引力的簡(jiǎn)單性?  圖 3的拓?fù)渚褪谴鸢浮?/p>


通過(guò)模擬減法消除 PWM DAC 紋波(2)
圖 3新型電壓模式紋波減法電路


新電路的運(yùn)行依賴(lài)于串聯(lián)的電容器 C1(產(chǎn)生 PWM 直流電壓分量)和 C2(提供反向紋波分量)。電壓總和是串聯(lián)電容器連接所固有的,因此,與 2017 年的電路一樣,從直流輸出中減去交流紋波。事實(shí)證明,如果 R1C1 時(shí)間常數(shù)剛好等于 2Tpwm 或 PWM 周期的兩倍——在這個(gè)具有 1MHz 時(shí)鐘的 8 位 PWM 示例中僅為 512?s,則紋波衰減足以滿(mǎn)足 8 位分辨率。更快的時(shí)鐘當(dāng)然會(huì)允許更短的時(shí)間常數(shù)。

請(qǐng)注意,新濾波電路的元件總數(shù)與原來(lái)的完全相同:一個(gè)反相器(例如,1/6 SN74HC04)、兩個(gè)電阻器和兩個(gè)電容器。


通過(guò)模擬減法消除 PWM DAC 紋波(2)
圖 4顯示無(wú)前沿延遲的電壓模式階躍響應(yīng)。


圖 4顯示了它的階躍響應(yīng),現(xiàn)在在 T = 0 時(shí)立即開(kāi)始,這與圖 2 的電流模式求和延遲不同,在約 16 個(gè) PWM 周期 = 約 4ms 內(nèi)產(chǎn)生 8 位穩(wěn)定 Tpwm。


通過(guò)模擬減法消除 PWM DAC 紋波(2)
圖 5電流模式(紅色)與電壓模式(綠色)響應(yīng)的比較。


圖 5比較了原始電流模式設(shè)計(jì) (~23 Tpwm) 與新電壓模式版本 (~16 Tpwm) 的 8 位階躍建立時(shí)間。

響應(yīng)速度提高 44% (23/16) 似乎是值得的性能改進(jìn),特別是考慮到相關(guān)的電路復(fù)雜性和成本增加 0%。

應(yīng)用于原始電流模式拓?fù)涞脑敿?xì)說(shuō)明(例如,利用更快的時(shí)鐘速率、精密模擬開(kāi)關(guān)和電壓參考來(lái)提高精度、噪聲和準(zhǔn)確度)當(dāng)然將直接應(yīng)用于這個(gè)新的電壓模式版本。



關(guān)鍵詞: PWM

評(píng)論


技術(shù)專(zhuān)區(qū)

關(guān)閉