新聞中心

EEPW首頁(yè) > 智能計(jì)算 > 業(yè)界動(dòng)態(tài) > 邊緣上的AI:“協(xié)作機(jī)器人”如何快速處理傳感器數(shù)據(jù)

邊緣上的AI:“協(xié)作機(jī)器人”如何快速處理傳感器數(shù)據(jù)

作者:Matthieu Chevrier 時(shí)間:2019-03-29 來(lái)源:電子產(chǎn)品世界 收藏

  作者:德州儀器 全球工業(yè)系統(tǒng)部門(mén)系統(tǒng)和應(yīng)用經(jīng)理Matthieu Chevrier

本文引用地址:http://2s4d.com/article/201903/399020.htm

  無(wú)論是傳統(tǒng)的工業(yè)機(jī)器人系統(tǒng),還是當(dāng)今最先進(jìn)的(Cobot),它們都要依靠可生成大量高度可變數(shù)據(jù)的傳感器。這些數(shù)據(jù)有助于構(gòu)建更佳的機(jī)器學(xué)習(xí)(ML)和人工智能()模型。而機(jī)器人依靠這些模型變得“自主”,可在動(dòng)態(tài)的現(xiàn)實(shí)環(huán)境中做出實(shí)時(shí)決策和導(dǎo)航。

  工業(yè)機(jī)器人通常位于“封閉”環(huán)境中,出于安全原因,如果該環(huán)境中有人類(lèi)進(jìn)入,機(jī)器人會(huì)停止移動(dòng)。但是限制人類(lèi)/機(jī)器人協(xié)作,也使得很多益處無(wú)法實(shí)現(xiàn)。具有自主運(yùn)行功能的機(jī)器人,可以支持安全高效的人類(lèi)與機(jī)器人的共存。

  機(jī)器人應(yīng)用的傳感和智能感知非常重要,因?yàn)闄C(jī)器人系統(tǒng)的高效性能,特別是ML/系統(tǒng), 在很大程度上取決于為這些系統(tǒng)提供關(guān)鍵數(shù)據(jù)的傳感器的性能。當(dāng)今數(shù)量廣泛且日益完善和精確的傳感器,結(jié)合能夠?qū)⑺羞@些傳感器數(shù)據(jù)融匯在一起的系統(tǒng),就可以支持機(jī)器人具有越來(lái)越好的知覺(jué)和意識(shí)。

  的發(fā)展

  機(jī)器人自動(dòng)化一直以來(lái)都是制造業(yè)的革命性技術(shù),將AI集成到機(jī)器人中顯然將在未來(lái)數(shù)年中使機(jī)器人技術(shù)產(chǎn)生巨大變化。本文探討了當(dāng)今機(jī)器人、自動(dòng)化和把AI及AI所需數(shù)據(jù)緊緊鏈接在一起從而實(shí)現(xiàn)智能的最重要技術(shù)的某些關(guān)鍵發(fā)展趨勢(shì),還討論了如何在AI系統(tǒng)中使用以及融匯不同的傳感器。

  推動(dòng)機(jī)器人的AI處理技術(shù)至邊緣計(jì)算

  ML包括兩個(gè)主要部分:培訓(xùn)和推理,可以在完全相異的處理平臺(tái)上執(zhí)行它們。培訓(xùn)通常是以離線方式在桌面上進(jìn)行或在云端完成,并且包括將大數(shù)據(jù)集入神經(jīng)網(wǎng)絡(luò)。在此階段,實(shí)時(shí)性能或功能都不是問(wèn)題。培訓(xùn)階段的結(jié)果是在部署時(shí)已經(jīng)有了一個(gè)經(jīng)過(guò)培訓(xùn)的AI系統(tǒng),該系統(tǒng)能夠執(zhí)行特定任務(wù),例如,調(diào)查組裝線上的瓶頸問(wèn)題、計(jì)算和跟蹤一個(gè)房間內(nèi)的人員或確定賬單是否是偽造的。

  但是,為了讓AI實(shí)現(xiàn)其在許多行業(yè)的應(yīng)用前景,在推理(執(zhí)行培訓(xùn)后的ML算法)期間必須實(shí)時(shí)或近實(shí)時(shí)完成傳感器數(shù)據(jù)的融合。為此,設(shè)計(jì)師需要在邊緣實(shí)施ML和深度學(xué)習(xí)模型,將推理功能部署到嵌入式系統(tǒng)中。

  舉例來(lái)說(shuō),在工作場(chǎng)所設(shè)立(如圖1),與人進(jìn)行密切協(xié)作。它需要使用來(lái)自近場(chǎng)傳感器及視覺(jué)傳感器的數(shù)據(jù),來(lái)確保它在成功防止人類(lèi)受到傷害的同時(shí),支持人類(lèi)完成對(duì)于他們來(lái)說(shuō)有難度的活動(dòng)。所有這些數(shù)據(jù)都需要實(shí)時(shí)處理,但是云的速度達(dá)不到需要的實(shí)時(shí)、低延時(shí)響應(yīng)。要攻克這個(gè)瓶頸,人們把當(dāng)今先進(jìn)的AI系統(tǒng)發(fā)展到了邊緣領(lǐng)域,即,機(jī)器人意味著存在于邊緣設(shè)備中。

1553848053738357.jpg

圖 1:人類(lèi)在工廠環(huán)境中與協(xié)作機(jī)器人互動(dòng)。

  這種分布式AI模型依賴(lài)于高度集成的處理器,這種處理器具有:

  豐富的外圍設(shè)備組,用于對(duì)接不同傳感器

  高性能處理功能,以運(yùn)行機(jī)器視覺(jué)算法

  加速深入學(xué)習(xí)推理的方法。

  此外,所有這些功能還必須高效工作,并且功耗相對(duì)低,體積相對(duì)小,以便由邊緣承載它們。

  隨著ML的普及,我們經(jīng)過(guò)功耗和尺寸優(yōu)化的“推理引擎”的可獲得性也越來(lái)越高。這些引擎是專(zhuān)為執(zhí)行ML推理而專(zhuān)門(mén)設(shè)計(jì)的硬件產(chǎn)品。

  集成式片上系統(tǒng)(SoC)在嵌入式空間內(nèi)通常是好的選擇,因?yàn)槌苓\(yùn)行深度學(xué)習(xí)推理的各種處理元件外,SoC還集成了使嵌入式應(yīng)用變得完整的許多必要部件。

  讓我們來(lái)分析一下當(dāng)今時(shí)代中的熱門(mén)機(jī)器人發(fā)展趨勢(shì)。



上一頁(yè) 1 2 下一頁(yè)

關(guān)鍵詞: AI 協(xié)作機(jī)器人

評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉