新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 通過(guò)電源模塊提高電動(dòng)工具設(shè)計(jì)的性能

通過(guò)電源模塊提高電動(dòng)工具設(shè)計(jì)的性能

作者:德州儀器 時(shí)間:2017-12-27 來(lái)源:電子產(chǎn)品世界 收藏

  電動(dòng)工具、 園藝工具和吸塵器等家電使用低電壓(2至10節(jié))鋰離子電池供電的電機(jī)驅(qū)動(dòng)。這些工具使用有刷直流(BDC)或三相無(wú)刷直流()電機(jī)。電機(jī)效率更高、維護(hù)少、噪音小、使用壽命更長(zhǎng)。

本文引用地址:http://2s4d.com/article/201712/373683.htm

  驅(qū)動(dòng)電機(jī)功率級(jí)的最重要的性能要求是尺寸小、效率高、散熱性能好、保護(hù)可靠、峰值電流承載能力強(qiáng)。小尺寸可實(shí)現(xiàn)工具內(nèi)的功率級(jí)的靈活安裝、更好的電路板布局性能和低成本設(shè)計(jì)。高效率可提供最長(zhǎng)的電池壽命并減少冷卻工作??煽康牟僮骱捅Wo(hù)可延長(zhǎng)使用壽命,有助于提高產(chǎn)品聲譽(yù)。

  為在兩個(gè)方向上驅(qū)動(dòng)BDC電機(jī),您需要使用兩個(gè)半橋(四個(gè)金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管())組成一個(gè)全橋。要驅(qū)動(dòng)三相電機(jī),需要使用三個(gè)半橋(六個(gè))組成一個(gè)三相逆變器。

  使用TI的采用堆疊管芯架構(gòu)的CSD88584Q5DC 和CSD88599Q5DC電源模塊(小型無(wú)引線(SON),5mm×6mm封裝),您可通過(guò)兩個(gè)電源模塊和只帶三個(gè)電源模塊的三相BLDC電機(jī)在兩個(gè)方向驅(qū)動(dòng)電機(jī),如圖1所示。每個(gè)電源模塊連接兩個(gè)(高側(cè)和低側(cè)MOSFET),組成一個(gè)半橋。

  圖1:不同電機(jī)驅(qū)動(dòng)拓?fù)渲械墓β蕢KMOSFET

  我們來(lái)看看這些功率塊可帶給無(wú)繩工具電機(jī)驅(qū)動(dòng)子系統(tǒng)設(shè)計(jì)的優(yōu)勢(shì)。

  功率密度倍增

  CSD885x功率塊中的雙重堆疊芯片技術(shù)使印刷電路板(PCB)面積達(dá)到了之前的兩倍,與分立MOSFET相比,PCB占地面積減少了50%。

  與相同性能級(jí)別的分立MOSFET(5mm×6mm)相比,在同一封裝中集成兩個(gè)FET的功率塊可讓用于逆變器拓?fù)涞娜郟CB面積減少90 mm2(3 x 5mm-6mm)。MOSFET互連軌道將與在帶分立MOSFET的PCB中運(yùn)行,而更高的工作電流也要求更寬的PCB軌跡,因此PCB尺寸的節(jié)省值實(shí)際上遠(yuǎn)超90 mm2。大多數(shù)無(wú)繩電動(dòng)工具應(yīng)用至少使用四層PCB,銅厚度大于2盎司。因此,通過(guò)電源模塊節(jié)省PCB尺寸可大大節(jié)省PCB成本。

  具有低寄生效應(yīng)的清潔MOSFET開(kāi)關(guān)

  圖2所示為功率級(jí)PCB設(shè)計(jì)中由元件引線和非優(yōu)化布局引起的寄生電感和電容。這些PCB寄生效應(yīng)會(huì)導(dǎo)致電壓振鈴,從而導(dǎo)致MOSFET上的電壓應(yīng)力。

  電機(jī)繞組

  圖2:功率級(jí)半橋中的寄生電感和電容。

  振鈴的原因之一是二極管反向恢復(fù)。由快速開(kāi)關(guān)引起的高電流變化率可能導(dǎo)致高二極管反向恢復(fù)電流。反向恢復(fù)電流流經(jīng)寄生布局電感。由FET電容和寄生電感形成的諧振網(wǎng)絡(luò)引起相位節(jié)點(diǎn)振鈴,減少了電壓裕度并增加了器件的應(yīng)力。圖3所示為由于電路寄生效應(yīng)引起的具有分立MOSFET的相位節(jié)點(diǎn)電壓振鈴。

  使用電源模塊時(shí),具有連接兩個(gè)MOSFET的開(kāi)關(guān)節(jié)點(diǎn)夾將高側(cè)和低側(cè)MOSFET之間的寄生電感保持在絕對(duì)最小值。在同一封裝中使用低側(cè)和高側(cè)FET可最大限度地減少PCB寄生,并減少相節(jié)點(diǎn)電壓振鈴。使用這些電源模塊有助于確保平滑的驅(qū)動(dòng)MOSFET開(kāi)關(guān),即使在電流高達(dá)50A時(shí)也不會(huì)出現(xiàn)電壓過(guò)沖,如圖4所示。

   圖3:具有分立MOSFET的相節(jié)點(diǎn)電壓振鈴和電壓過(guò)沖

  圖4:帶有電源模塊的清潔相位節(jié)點(diǎn)切換波形

  低PCB損耗,PCB寄生電阻降低

  功率塊有助于減少PCB中高電流承載軌道的長(zhǎng)度,從而減少軌道中的功率損耗。

  讓我們了解分立FET的PCB軌道要求。頂部和底部分立MOSFET之間的PCB軌道連接導(dǎo)致PCB中的I2R損耗。圖5所示為將頂部和底部分立MOSFET并排連接時(shí)的銅軌道;這是可將電機(jī)繞組連輕松連接到PCB的常見(jiàn)布局之一。連接相位節(jié)點(diǎn)的銅面積的長(zhǎng)度為寬度的兩倍(軌道寬度取決于電流,軌道寬度通常受電路板的外形尺寸限制)。或者,您可以上下排列頂側(cè)和底側(cè)分立MOSFET,保持在相位節(jié)點(diǎn)之間。但是由于需要提供將電機(jī)繞組連接到相位節(jié)點(diǎn),您可能無(wú)法減少軌道長(zhǎng)度,并且這種布置可能不適合所有應(yīng)用。

  若設(shè)計(jì)的PCB銅厚度為2oz(70μm),則連接圖5所示的相位節(jié)點(diǎn)的單層PCB軌道將具有約0.24mΩ的電阻。假設(shè)軌道存在于兩個(gè)PCB平面中,則等效PCB電阻為0.12mΩ。對(duì)于三相功率級(jí),您有三個(gè)這樣的PCB軌道。您也可對(duì)直流電源輸入和返回軌道進(jìn)行類似的分析。

  電源模塊具有單個(gè)封裝中的頂側(cè)和底側(cè)MOSFET,以及通過(guò)封裝內(nèi)的金屬夾連接的相位節(jié)點(diǎn),可優(yōu)化寄生電阻,并為布局提供靈活性,并可節(jié)省最小的0.5至1mΩ的總PCB電阻。

  圖5:具有分立MOSFET的典型相位節(jié)點(diǎn)軌道長(zhǎng)度

  卓越的散熱性能,雙重冷卻

  CSD885x電源模塊采用DualCool?封裝,可在封裝頂部實(shí)現(xiàn)散熱,從而將熱量從電路板上散開(kāi),提供出色的散熱性能,并提高在5mm×6mm封裝中的功率。根據(jù)數(shù)據(jù)手冊(cè)規(guī)范,功率塊具有1.1°C/W的結(jié)到底殼體熱阻,和2.1°C/W的結(jié)到頂殼體的熱阻。您可優(yōu)化功率塊底殼的PCB或功率塊的頂蓋的散熱片的冷卻功能。圖6所示為在1kW,36V三相逆變器PCB(36mm×50mm)內(nèi)使用三個(gè)CSD88599Q5DC雙冷60V電源模塊測(cè)試的頂側(cè)公共散熱器(27mm×27mm×23mm)的結(jié)果,不帶任何氣流。在測(cè)試期間,散熱器和功率塊頂殼之間使用具有低熱阻抗(Rθ<0.5°C / W)的電絕緣熱接口。

  圖6:顯示有效頂側(cè)冷卻的電路板的熱像

  在圖6中,您可看到頂側(cè)冷卻的有效性,其中PCB上觀察到的最大溫度(功率塊底殼之下)與散熱器溫度之間的差異小于11°C。熱量傳導(dǎo)良好,并通過(guò)電源模塊的頂部冷卻金屬焊盤(pán)分配到頂側(cè)散熱器。

  頂側(cè)和底側(cè)FET之間的熱量共享

  在單相或三相逆變器中,頂側(cè)和底側(cè)MOSFET的損耗可能不同。這些損耗通常取決于脈寬調(diào)制拓?fù)涞念愋秃凸ぷ髡伎毡?。不同的損耗導(dǎo)致頂側(cè)和底側(cè)MOSFET的加熱不同。在系統(tǒng)設(shè)計(jì)中使用分立MOSFET時(shí),可以嘗試這些不同的方法來(lái)平衡頂側(cè)和底側(cè)FET之間的溫度:

  · 為MOSFET使用不同的冷卻區(qū)域,并為具有更大損耗的MOSFET提供更多的PCB銅面積或散熱器。

  · 根據(jù)其額定電流,為頂側(cè)和底側(cè)的MOSFET使用不同的器件。例如,您可使用具有較小導(dǎo)通狀態(tài)導(dǎo)通電阻(R DS_ON)的器件,用于承載更多電流的MOSFET。

  當(dāng)MOSFET變熱時(shí),這些方法不會(huì)提供最佳冷卻,這取決于工作占空比,導(dǎo)致PCB面積或MOSFET額定值利用不足。使用功率塊MOSFET,其中頂側(cè)和底側(cè)MOSFET處于同一封裝中,從而實(shí)現(xiàn)頂側(cè)和底側(cè)MOSFET之間的自動(dòng)熱共享,并提供更好的熱性能和優(yōu)化的系統(tǒng)性能。

  系統(tǒng)成本低

  可通過(guò)在設(shè)計(jì)中使用功率塊MOSFET來(lái)優(yōu)化系統(tǒng)成本。如果此博文中所述的所有優(yōu)勢(shì)均達(dá)成的話,即可降低成本:

  · 一半的解決方案尺寸,大大降低PCB成本。

  · 低寄生效應(yīng)可實(shí)現(xiàn)更可靠的解決方案,其具有更長(zhǎng)的壽命且維護(hù)少。

  · 降低PCB軌道長(zhǎng)度會(huì)降低PCB電阻,從而通過(guò)較小的散熱器降低損耗,提高效率。

  · 卓越的熱性能可提高冷卻效果。

  MOSFET功率塊有助于實(shí)現(xiàn)更可靠、更小尺寸、高效率和具有成本競(jìng)爭(zhēng)力的系統(tǒng)解決方案。

  其它資源

  · 查看我們最新的采用TI 40-MOSFET MOSFET功率塊的參考設(shè)計(jì)

  · 了解我們的緊湊型1kW功率級(jí)參考設(shè)計(jì) 如何為36V無(wú)刷直流(BLDC)電機(jī)實(shí)現(xiàn)99%的效率

  · 了解更高功率密度的需求如何推動(dòng)創(chuàng)新

  · 了解功率MOSFET模塊的更多信息



關(guān)鍵詞: BLDC MOSFET

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉