云中的機(jī)器學(xué)習(xí):FPGA上的深度神經(jīng)網(wǎng)絡(luò)
憑借出色的性能和功耗指標(biāo),賽靈思FPGA成為設(shè)計(jì)人員構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)的首選。新的軟件工具可簡化實(shí)現(xiàn)工作。
本文引用地址:http://2s4d.com/article/201706/348663.htm
人工智能正在經(jīng)歷一場變革,這要得益于機(jī)器學(xué)習(xí)的快速進(jìn)步。在機(jī)器學(xué)習(xí)領(lǐng)域,人們正對一類名為“深度學(xué)習(xí)”算法產(chǎn)生濃厚的興趣,因?yàn)檫@類算法具有出色的大數(shù)據(jù)集性能。在深度學(xué)習(xí)中,機(jī)器可以在監(jiān)督或不受監(jiān)督的方式下從大量數(shù)據(jù)中學(xué)習(xí)一項(xiàng)任務(wù)。大規(guī)模監(jiān)督式學(xué)習(xí)已經(jīng)在圖像識別和語音識別等任務(wù)中取得巨大成功。
深度學(xué)習(xí)技術(shù)使用大量已知數(shù)據(jù)找到一組權(quán)重和偏差值,以匹配預(yù)期結(jié)果。這個(gè)過程被稱為訓(xùn)練,并會(huì)產(chǎn)生大型模式。這激勵(lì)工程師傾向于利用專用硬件(例如GPU)進(jìn)行訓(xùn)練和分類。
隨著數(shù)據(jù)量的進(jìn)一步增加,機(jī)器學(xué)習(xí)將轉(zhuǎn)移到云。大型機(jī)器學(xué)習(xí)模式實(shí)現(xiàn)在云端的CPU上。盡管GPU對深度學(xué)習(xí)算法而言在性能方面是一種更好的選擇,但功耗要求之高使其只能用于高性能計(jì)算集群。因此,亟需一種能夠加速算法又不會(huì)顯著增加功耗的處理平臺(tái)。在這樣的背景下,FPGA 似乎是一種理想的選擇,其固有特性有助于在低功耗條件下輕松啟動(dòng)眾多并行過程。
讓我們來詳細(xì)了解一下如何在賽靈思FPGA上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN)。CNN是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對在FPGA上實(shí)現(xiàn)CNN做一個(gè)可行性研究,看一下FPGA是否適用于解決大規(guī)模機(jī)器學(xué)習(xí)問題。
卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò)(DNN),工程師最近開始將該技術(shù)用于各種識別任務(wù)。圖像識別、語音識別和自然語言處理是CNN比較常見的幾大應(yīng)用。
什么是卷積神經(jīng)網(wǎng)絡(luò)?
卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開始將該技術(shù)用于各種識別任務(wù)。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應(yīng)用。
2012年,Alex Krishevsky與來自多倫多大學(xué)(University of Toronto)的其他研究人員 [1] 提出了一種基于CNN的深度架構(gòu),贏得了當(dāng)年的“Imagenet 大規(guī)模視覺識別挑戰(zhàn)”獎(jiǎng)。他們的模型與競爭對手以及之前幾年的模型相比在識別性能方面取得了實(shí)質(zhì)性的提升。自此,AlexNet成為了所有圖像識別任務(wù)中的對比基準(zhǔn)。
AlexNet有五個(gè)卷積層和三個(gè)致密層(圖1)。每個(gè)卷積層將一組輸入特征圖與一組權(quán)值濾波器進(jìn)行卷積,得到一組輸出特征圖。致密層是完全相連的一層,其中的每個(gè)輸出均為所有輸入的函數(shù)。
卷積層
AlexNet中的卷積層負(fù)責(zé)三大任務(wù),如圖2所示:3D卷積;使用校正線性單元(ReLu)實(shí)現(xiàn)激活函數(shù);子采樣(最大池化)。3D卷積可用以下公式表示:
其中Y(m,x,y)是輸出特征圖m位置(x,y)處的卷積輸出,S是(x,y)周圍的局部鄰域,W是卷積濾波器組,X(n,x,y)是從輸入特征圖n上的像素位置(x,y)獲得的卷積運(yùn)算的輸入。
所用的激活函數(shù)是一個(gè)校正線性單元,可執(zhí)行函數(shù)Max(x,0)。激活函數(shù)會(huì)在網(wǎng)絡(luò)的傳遞函數(shù)中引入非線性。最大池化是 AlexNet 中使用的子采樣技術(shù)。使用該技術(shù),只需選擇像素局部鄰域最大值傳播到下一層。
定義致密層
AlexNet中的致密層相當(dāng)于完全連接的層,其中每個(gè)輸入節(jié)點(diǎn)與每個(gè)輸出節(jié)點(diǎn)相連。AlexNet中的第一個(gè)致密層有9,216個(gè)輸入節(jié)點(diǎn)。將這個(gè)向量乘以權(quán)值矩陣,以在4,096個(gè)輸出節(jié)點(diǎn)中產(chǎn)生輸出。在下一個(gè)致密層中,將這個(gè) 4,096 節(jié)點(diǎn)向量與另一個(gè)權(quán)值矩陣相乘得到4,096個(gè)輸出。最后,使用4,096個(gè)輸出通過softmax regression為1,000個(gè)類創(chuàng)建概率。
在FPGA上實(shí)現(xiàn)CNN
隨著新型高級設(shè)計(jì)環(huán)境的推出,軟件開發(fā)人員可以更方便地將其設(shè)計(jì)移植到賽靈思FPGA中。軟件開發(fā)人員可通過從C/C++代碼調(diào)用函數(shù)來充分利用 FPGA與生俱來的架構(gòu)優(yōu)勢。Auviz Systems的庫(例如AuvizDNN)可為用戶提供最佳函數(shù),以便其針對各種應(yīng)用創(chuàng)建定制CNN??稍谫愳`思SD-Accel這樣的設(shè)計(jì)環(huán)境中調(diào)用這些函數(shù),以在FPGA上啟動(dòng)內(nèi)核。
最簡單的方法是以順序方式實(shí)現(xiàn)卷積和向量矩陣運(yùn)算??紤]到所涉及計(jì)算量,因此順序計(jì)算會(huì)產(chǎn)生較大時(shí)延。
順序?qū)崿F(xiàn)產(chǎn)生很大時(shí)遲的主要原因在于CNN所涉及的計(jì)算的絕對數(shù)量。圖3顯示了AlexNet中每層的計(jì)算量和數(shù)據(jù)傳輸情況,以說明其復(fù)雜性。
因此,很有必要采用并行計(jì)算。有很多方法可將實(shí)現(xiàn)過程并行化。圖6給出了其中一種。在這里,將11x11的權(quán)值矩陣與一個(gè)11x11的輸入特征圖并行求卷積,以產(chǎn)生一個(gè)輸出值。這個(gè)過程涉及121個(gè)并行的乘法-累加運(yùn)算。根據(jù)FPGA的可用資源,我們可以并行對512抑或768個(gè)值求卷積。
為了進(jìn)一步提升吞吐量,我們可以將實(shí)現(xiàn)過程進(jìn)行流水線化。流水線能為需要一個(gè)周期以上才能完成的運(yùn)算實(shí)現(xiàn)更高的吞吐量,例如浮點(diǎn)數(shù)乘法和加法。通過流水線處理,第一個(gè)輸出的時(shí)延略有增加,但每個(gè)周期我們都可獲得一個(gè)輸出。
使用AuvizDNN在FPGA上實(shí)現(xiàn)的完整CNN就像從C/C++程序中調(diào)用一連串函數(shù)。在建立對象和數(shù)據(jù)容器后,首先通過函數(shù)調(diào)用來創(chuàng)建每個(gè)卷積層,然后創(chuàng)建致密層,最后是創(chuàng)建softmax層,如圖 4 所示。
AuvizDNN是Auviz Systems公司提供的一種函數(shù)庫,用于在FPGA上實(shí)現(xiàn)CNN。該函數(shù)庫提供輕松實(shí)現(xiàn)CNN所需的所有對象、類和函數(shù)。用戶只需要提供所需的參數(shù)來創(chuàng)建不同的層。例如,圖5中的代碼片段顯示了如何創(chuàng)建AlexNet中的第一層。
AuvizDNN提供配置函數(shù),用以創(chuàng)建CNN的任何類型和配置參數(shù)。AlexNet僅用于演示說明。CNN 實(shí)現(xiàn)內(nèi)容作為完整比特流載入FPGA并從C/C++程序中調(diào)用,這使開發(fā)人員無需運(yùn)行實(shí)現(xiàn)軟件即可使用AuvizDNN。
FPGA具有大量的查找表(LUT)、DSP模塊和片上存儲(chǔ)器,因此是實(shí)現(xiàn)深度CNN的最佳選擇。在數(shù)據(jù)中心,單位功耗性能比原始性能更為重要。數(shù)據(jù)中心需要高性能,但功耗要在數(shù)據(jù)中心服務(wù)器要求限值之內(nèi)。
像賽靈思Kintex UltraScale 這樣的FPGA器件可提供高于14張圖像/秒/瓦特的性能,使其成為數(shù)據(jù)中心應(yīng)用的理想選擇。圖6介紹了使用不同類型的FPGA所能實(shí)現(xiàn)的性能。
一切始于C/C++
卷積神經(jīng)網(wǎng)絡(luò)備受青睞,并大規(guī)模部署用于處理圖像識別、自然語言處理等眾多任務(wù)。隨著CNN從高性能計(jì)算應(yīng)用(HPC)向數(shù)據(jù)中心遷移,需要采用高效方法來實(shí)現(xiàn)它們。
FPGA可高效實(shí)現(xiàn)CNN。FPGA的具有出色的單位功耗性能,因此非常適用于數(shù)據(jù)中心。
AuvizDNN函數(shù)庫可用來在FPGA上實(shí)現(xiàn)CNN。AuvizDNN能降低FPGA的使用復(fù)雜性,并提供用戶可從其C/C++程序中調(diào)用的簡單函數(shù),用以在FPGA上實(shí)現(xiàn)加速。使用AuvizDNN時(shí),可在AuvizDNN 庫中調(diào)用函數(shù),因此實(shí)現(xiàn)FPGA加速與編寫C/C++程序沒有太大區(qū)別。
圖 1 – AlexNet是一種圖像識別基準(zhǔn),包含五個(gè)卷積層(藍(lán)框)和三個(gè)致密層(黃)。
圖 2 – AlexNet中的卷積層執(zhí)行3D卷積、激活和子采樣。
圖 3 – 圖表展示了AlexNet中涉及的計(jì)算復(fù)雜性和數(shù)據(jù)傳輸數(shù)量。
圖 4 - 實(shí)現(xiàn)CNN時(shí)的函數(shù)調(diào)用順序。
圖 5 – 使用AuvizDNN創(chuàng)建AlexNet的L1的代碼片段。
圖 6 – AlexNets的性能因FPGA類型不同而不同。
評論