新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 開關(guān)電源過流保護(hù)方式比較分析

開關(guān)電源過流保護(hù)方式比較分析

作者: 時(shí)間:2016-12-06 來源:網(wǎng)絡(luò) 收藏

  引言

本文引用地址:http://2s4d.com/article/201612/326895.htm

  電源作為一切電子產(chǎn)品的供電設(shè)備,除了性能要滿足供電產(chǎn)品的要求外,其自身的保護(hù)措施也非常重要,如過壓、過流、過熱保護(hù)等。一旦電子產(chǎn)品出現(xiàn)故障時(shí),如電子產(chǎn)品輸入側(cè)短路或輸出側(cè)開路時(shí),則電源必須關(guān)閉其輸出電壓,才能保護(hù)功率MOSFET和輸出側(cè)設(shè)備等不被燒毀,否則可能引起電子產(chǎn)品的進(jìn)一步損壞,甚至引起操作人員的觸電及火災(zāi)等現(xiàn)象,因此,開關(guān)電源過流保護(hù)功能一定要完善。

  1 開關(guān)電源中常用的過流保護(hù)方式

  過電流保護(hù)有多種形式,如圖1所示,可分為額定電流下垂型,即フ字型;恒流型;恒功率型,多數(shù)為電流下垂型。過電流的設(shè)定值通常為額定電流的110%~130%。一般為自動(dòng)恢復(fù)型。

  圖1中①表示電流下垂型,②表示恒流型,③表示恒功率型。

  

  圖1  過電流保護(hù)特性

  1.1 用于變壓器初級(jí)直接驅(qū)動(dòng)電路中的限流電路

  在變壓器初級(jí)直接驅(qū)動(dòng)的電路(如單端正激式變換器或反激式變換器)的設(shè)計(jì)中,實(shí)現(xiàn)限流是比較容易的。圖2是在這樣的電路中實(shí)現(xiàn)限流的兩種方法。

  圖2電路可用于單端正激式變換器和反激式變換器。圖2(a)與圖2(b)中在MOSFET的源極均串入一個(gè)限流電阻Rsc,在圖2(a)中, Rsc提供一個(gè)電壓降驅(qū)動(dòng)晶體管S2導(dǎo)通,在圖2(b)中跨接在Rsc上的限流電壓比較器,當(dāng)產(chǎn)生過流時(shí),可以把驅(qū)動(dòng)電流脈沖短路,起到保護(hù)作用。

  圖2(a)與圖2(b)相比,圖2(b)保護(hù)電路反應(yīng)速度更快及準(zhǔn)確。首先,它把比較放大器的限流驅(qū)動(dòng)的門檻電壓預(yù)置在一個(gè)比晶體管的門檻電壓Vbe更 精確的范圍內(nèi);第二,它把所預(yù)置的門檻電壓取得足夠小,其典型值只有100mV~200mV,因此,可以把限流取樣電阻Rsc的值取得較小,這樣就減小了 功耗,提高了電源的效率。

  

  (a)晶體管保護(hù)

  

 ?。╞)限流比較器保護(hù)

  圖2  在單端正激式或反激式變換器電路中的限流電路

  當(dāng)AC輸入電壓在90~264V范圍內(nèi)變化,且輸出同等功率時(shí),則變壓器初級(jí)的尖峰電流相差很大,導(dǎo)致高、低端過流保護(hù)點(diǎn)嚴(yán)重漂移,不利于過流點(diǎn)的一致 性。在電路中增加一個(gè)取自+VH的上拉電阻R1,其目的是使S2的基極或限流比較器的同相端有一個(gè)預(yù)值,以達(dá)到高低端的過流保護(hù)點(diǎn)盡量一致。

  1.2 用于基極驅(qū)動(dòng)電路的限流電路

  在一般情況下,都是利用基極驅(qū)動(dòng)電路把電源的控制電路和開關(guān)晶體管隔離開來。變換器的輸出部分和控制電路共地。限流電路可以直接和輸出電路相接,其電路如圖3所示。在圖3中,控制電路與輸出電路共地。工作原理如下:

  

  圖3  用于多種電源變換器中的限流電路

  電路正常工作時(shí),負(fù)載電流IL流過電阻Rsc產(chǎn)生的壓降不足以使S1導(dǎo)通,由于S1在截止時(shí)IC1=0, 電容器C1處于未充電狀態(tài),因此晶體管S2也截止。如果負(fù)載側(cè)電流增加,使IL達(dá)到一個(gè)設(shè)定的值,使得ILRsc=Vbe1+I(xiàn)b1R1,則S1導(dǎo)通,使 電容器C1充電,其充電時(shí)間常數(shù)τ= R2C1,C1上充滿電荷后的電壓是VC1=Ib2R4+Vbe2。在電路檢測(cè)到有過流發(fā)生時(shí),為使電容器C1能夠快速放電,應(yīng)當(dāng)選擇R4

  1.3 無功率損耗的限流電路

  上述兩種過流保護(hù)比較有效,但是Rsc的存在降低了電源的效率,尤其是在大電流輸出的情況下,Rsc上的功耗就會(huì)明顯增加。圖4電路利用電流互感器作為檢測(cè)元件,就為電源效率的提高創(chuàng)造了一定的條件。

  圖4電路工作原理如下:利用電流互感器T2監(jiān)視負(fù)載電流IL,IL在通過互感器初級(jí)時(shí),把電流的變化耦合到次級(jí),在電阻R1上產(chǎn)生壓降。二極管D3對(duì)脈 沖電流進(jìn)行整流,經(jīng)整流后由電阻R2和電容C1進(jìn)行平滑濾波。當(dāng)發(fā)生過載現(xiàn)象時(shí),電容器C1兩端電壓迅速增加,使齊納管D4導(dǎo)通,驅(qū)動(dòng)晶體管 S1導(dǎo)通,S1集電極的信號(hào)可以用來作為電源變換器調(diào)節(jié)電路的驅(qū)動(dòng)信號(hào)。

  

  圖4  無功耗限流電路

  電流互感器可以用鐵氧體磁芯或MPP環(huán)型磁芯來繞制,但要經(jīng)過反復(fù)實(shí)驗(yàn),以確保磁芯不飽和。理想的電流互感器應(yīng)該達(dá)到匝數(shù)比是電流比。通?;ジ衅鞯腘p=1,Ns=NpIpR1/(Vs+VD3)。具體繞制數(shù)據(jù)最后還要經(jīng)過實(shí)驗(yàn)調(diào)整,使其性能達(dá)到最佳狀態(tài)。

1.4 用555做限流電路

  圖5為555集成時(shí)基電路的基本框圖。

  

  圖5  555集成時(shí)基電路的基本框圖

  555集成時(shí)基電路是一種新穎的、多用途的模擬集成電路,有LM555,RCA555,5G1555等,其基本性能都是相同的,用它組成的延時(shí)電路、單穩(wěn)態(tài)振蕩器、多諧振蕩器及各種脈沖調(diào)制電路,用途十分廣泛,也可用于直接變換器的控制電路。

  555時(shí)基電路由分壓器R1、R2、R3,兩個(gè)比較器,R-S觸發(fā)器以及兩個(gè)晶體管等組成,電路在5~18V范圍內(nèi)均能工作。分壓器提供偏壓給比較器1 的反相輸入端,電壓為2Vcc/3,提供給比較器2的同相輸入端電壓為Vcc/3,比較器的另兩個(gè)輸入端腳2、腳6分別為觸發(fā)和門限,比較器輸出控制R- S觸發(fā)器,觸發(fā)器輸出供給輸出級(jí)以及晶體管V1的基極。當(dāng)觸發(fā)器輸出置高時(shí),V1導(dǎo)通,接通腳7的放電電路;當(dāng)觸發(fā)器輸出為低時(shí),V1截止,輸出級(jí)提供一 個(gè)低的輸出阻抗,并且將觸發(fā)器輸出脈沖反相。當(dāng)觸發(fā)器輸出置高時(shí),腳3輸出的電壓為低電平,觸發(fā)器輸出為低時(shí),腳3輸出的電壓為高電平。輸出級(jí)能夠提供的 最大電流為200mA,晶體管V2是PNP管,它的發(fā)射極接內(nèi)部基準(zhǔn)電壓Vr,Vr的取值總是小于電源電壓Vcc,因此,若將V2的基極(腳4 復(fù)位)接到Vcc上,V2的基—射極為反偏,晶體管V2截止。

  圖6為用555做限流保護(hù)的電路,其工作原理如下:UC384X與S1及T1組成一個(gè)基本的PWM變換器電路。UC384X系列控制IC有兩個(gè)閉環(huán)控制回路,一個(gè)是輸出電壓Vo反饋至誤差放大器,用于同基準(zhǔn)電壓Vref比較之后產(chǎn)生誤差電壓(為了防止誤差放大器的自激現(xiàn)象產(chǎn)生,直接把腳2對(duì)地短接);另一個(gè)是變壓器初級(jí)電感中的電流在T2次級(jí)檢測(cè)到的電流值在R8及C7上的電壓,與誤差電壓進(jìn)行比較后產(chǎn)生調(diào)制脈沖的脈沖信號(hào)。當(dāng)然,這些均在時(shí)鐘所設(shè)定的固定頻率下工作。UC384X具有良好的線性調(diào)整率,能達(dá)到0.01%/V;可明顯地改善負(fù)載調(diào)整率;使誤差放大器的外電路補(bǔ)償網(wǎng)絡(luò)得 到簡(jiǎn)化,穩(wěn)定度提高并改善了頻響,具有更大的增益帶寬乘積。UC384X有兩種關(guān)閉技術(shù);一是將腳3電壓升高超過1V,引起過流保護(hù)開關(guān)關(guān)閉電路輸出;二 是將腳1 電壓降到1V以下,使PWM比較器輸出高電平,PWM鎖存器復(fù)位,關(guān)閉輸出,直到下一個(gè)時(shí)鐘脈沖的到來,將PWM鎖存器置位,電路才能重新啟動(dòng)。電流互感 器T2監(jiān)視著T1的尖峰電流值,當(dāng)發(fā)生過載時(shí),T1的尖峰電流迅速上升,使T2的次級(jí)電流上升,經(jīng)D1整流,R9及C7平滑濾波,送到IC1的腳3,使 IC1的腳1電平下降(注意:接IC1腳1的R3,C4必須接成開環(huán)模式,如接成閉環(huán)模式則過流時(shí)555的腳7放電端無法放電)。IC1的腳1與IC2的 腳6相連接,使IC2的比較器1同相輸入端的電壓降低,觸發(fā)器Q輸出高電平,V1導(dǎo)通,IC2的腳7放電,使IC1的腳1電平被拉低于1V,則IC1輸出 關(guān)閉,S1因無極驅(qū)動(dòng)信號(hào)而關(guān)閉,使電路得到保護(hù)。若過流不消除,則重復(fù)上述過程,IC1重新進(jìn)入啟動(dòng)、關(guān)閉、再啟動(dòng)、再關(guān)閉的循環(huán)狀態(tài),即“打嗝”現(xiàn) 象。而且,過負(fù)載期間,重復(fù)進(jìn)行著啟振與停振,但停振時(shí)間長(zhǎng),啟振時(shí)間短,因此電源不會(huì)過熱,這種過負(fù)載保護(hù)稱為周期保護(hù)方式(當(dāng)輸入端輸入電壓變化范圍 較大時(shí),仍可使高、低端的過流保護(hù)點(diǎn)基本相同)。其振蕩周期由555單穩(wěn)多諧振蕩器的RC時(shí)間常數(shù)τ決定,本例中τ=R1C1,直到過載現(xiàn)象消失,電路才 可恢復(fù)正常工作。電流互感器T2的選擇同1.3的互感器計(jì)算方法。

  

  圖6  用555做限流保護(hù)電路

  圖6電路,可以用在單端反激式或單端正激式變換器中,也可用在半橋式、全橋式或推挽式電路中,只要IC1有反饋控制端及基準(zhǔn)電壓端即可,當(dāng)發(fā)生過流現(xiàn)象時(shí),用555電路的單穩(wěn)態(tài)特性使電路工作在“打嗝”狀態(tài)下。

  1.5 幾種過流保護(hù)方式的比較

  幾種過流保護(hù)方式的比較如表1所列。

  表1 幾種過流保護(hù)方式的比較

  

  2 結(jié)語

  作者經(jīng)過長(zhǎng)期的研發(fā)與生產(chǎn),比較了開關(guān)電源中所使用的各種過流保護(hù)方法,可以說,幾乎沒有一種過流保護(hù)方式是萬能的,只有用555的保護(hù)方式性能價(jià)格比 是較好的。一般來說,選擇何種過流保護(hù)方式,都要結(jié)合具體的電路變換模式而做出相應(yīng)的選擇。只有經(jīng)過認(rèn)真的分析,大量的實(shí)驗(yàn)才能找到最適合的過流保護(hù)方 式。保護(hù)方式設(shè)計(jì)的合理、有效,意味著產(chǎn)品的可靠性才可能更高。



關(guān)鍵詞: 開關(guān)電源過流保

評(píng)論


技術(shù)專區(qū)

關(guān)閉