新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 開關(guān)電源變壓器渦流損耗分析

開關(guān)電源變壓器渦流損耗分析

作者: 時間:2016-12-06 來源:網(wǎng)絡(luò) 收藏

  的渦流損耗在開關(guān)電源的總損耗中所占的比例很大,如何降低開關(guān)電源變壓器的渦流損耗,是器或開關(guān)電源設(shè)計的一個重要內(nèi)容。變壓器生產(chǎn)渦流損耗的原理是比較簡單的,由于變壓器鐵芯除了是一種很好的導(dǎo)磁材料以外,同時它也屬于一種導(dǎo)電體;當(dāng)交變磁力線從導(dǎo)電體中穿過時,導(dǎo)電體中就會產(chǎn)生感應(yīng)電動勢,在感應(yīng)電動勢的作用下,在導(dǎo)電體中就會產(chǎn)生回路電流使導(dǎo)體發(fā)熱;這種由于交變磁力線穿過導(dǎo)體,并在導(dǎo)體中產(chǎn)生感應(yīng)電動勢和回路電流的現(xiàn)象,人們把它稱為渦流,因為它產(chǎn)生的回路電流沒有作為能量向外輸出,而是損耗在自身的導(dǎo)體之中。

本文引用地址:http://2s4d.com/article/201612/326893.htm

  單激式器的渦流損耗計算與雙激式開關(guān)電源變壓器的渦流損耗計算,在方法上是有區(qū)別的。但用于計算單激式開關(guān)電源變壓器渦流損耗的方法,只需稍微變換,就可以用于對雙激式開關(guān)電源變壓器的渦流損耗進行計算。例如,把雙激式開關(guān)電源變壓器的雙極性輸入電壓,分別看成是兩次極性不同的單極性輸入電壓,這樣就可以實現(xiàn)對于雙激式開關(guān)電源變壓器渦流損耗的計算。因此,下面僅對單激式開關(guān)電源變壓器的渦流損耗計算進行詳細分析。

  當(dāng)有一個直流脈沖電壓加到變壓器初級線圈的兩端時,在變壓器初級線圈中就就有勵磁電流通過,并在變壓器鐵芯中產(chǎn)生磁場強度H和磁通密度B,兩者由下式?jīng)Q定:

  B =ΔB*t/τ +B(0) (2-44)

  H =ΔH*t/ΔH +H(0) (2-45)

  上式中ΔB和ΔH分別為磁通密度增量和磁場強度增量,τ為直流脈沖寬度,B(0)和H(0)分別為t = 0時的磁通密度B和磁場強度H。

  傳統(tǒng)的變壓器鐵芯為了降低渦流損耗,一般都把變壓器鐵芯設(shè)計成由許多薄鐵片,簡稱為鐵芯片,互相重迭在一起組成,并且鐵芯片之間互相絕緣。圖2-18表示變壓器鐵芯或變壓器鐵芯中的一鐵芯片。我們可以把這些鐵芯片看成是由非常多的“線圈”(如圖中虛線所示)緊密結(jié)合在一起組成;當(dāng)交變磁力線從這些“線圈”中垂直穿過時,在這些“線圈”中就會產(chǎn)生感應(yīng)電動勢和感應(yīng)電流,由于這些“線圈”存在電阻,因此這些“線圈”要損耗電磁能量。

  

  在直流脈沖作用期間,渦流的機理與正激電壓輸出的機理是基本相同的。渦流產(chǎn)生磁場的方向與勵磁電流產(chǎn)生磁場的方向正好相反,在鐵芯片的中心處去磁力最強,在邊緣去磁力為零。因此,在鐵芯片中磁通密度分布是不均勻的,即最外層磁場強度最大,中心處最小。如果渦流退磁作用很強,則磁通密度的最大值可能遠遠超過其平均值,該數(shù)值由已知脈沖的幅度和寬度來決定。

  沿鐵芯片截面的磁場分布,可以用麥克斯韋的方程式來求得;麥克斯韋的微分方程式為:

  

  

  上式中 μa為變壓器鐵芯的平均導(dǎo)磁率,ρc為鐵芯的電阻率,負號表示渦流產(chǎn)生的磁場方向與勵磁電流產(chǎn)生的磁場方向相反。rot E和rot Hx分別表示電場和磁場的旋度,即渦旋電場和渦旋磁場的強度。Hx、Hy、Hz分別磁場強度H的三個分量;Bx、By、Bz分別磁感應(yīng)強度B的三個分量;Ex、Ey、Ez分別電場強度H的三個分量。

  由于單激式開關(guān)電源變壓器鐵芯的磁滯回線面積很小,其磁化曲線基本上可以看成一根直線,導(dǎo)磁率μ也可以看成是一個常數(shù);因此,這里使用平均導(dǎo)磁率 來取代意義廣泛的導(dǎo)磁率 。

  從圖2-18可以看出,磁場強度由H = Hz:和Hx = Hy = 0組成;對于電場強度,其指向平行于Y軸為E = Ey,Ex = Ez = 0。因此,上面兩式又可以改寫為:

  

  對(2-53)式進行微分,然后代入(2-52)式,即可求得磁場強度的一維分布方程為:

  

  由于加到變壓器初級線圈兩端的電壓是一個直流脈沖方波,在穩(wěn)定狀態(tài)條件下,勵磁電流產(chǎn)生的磁場強度或磁通密度的增長應(yīng)與時間成線性關(guān)系,即:

  

  當(dāng)x = 0時,正好位于鐵芯片的中心,此處的磁場強度最小,即此點的導(dǎo)數(shù)值等于0,由此求得積分常數(shù)c1= 0。

  對(2-57)再進行一次積分得:

  

  由于在變壓器鐵芯片內(nèi),截面磁場強度的平均值Ha,在任一時間內(nèi)都必須等于電磁感應(yīng)所要求的值,即滿足(2-45)式的要求,因此對應(yīng)圖2-18對(2-58)式求平均值得:

  

  把(2-60)代入(2-58)式,可求得在穩(wěn)定狀態(tài)條件下鐵芯片中的磁場強度為:

  

  圖2-19-a和圖2-19-b分別是由(2-61)式給出的,鐵芯片中磁場強度按水平方向分布的函數(shù)H(x)和按時間分布的函數(shù)H(t)曲線圖。

  從圖2-19-a中可以看出,由于渦流產(chǎn)生反磁化作用的緣故,在鐵芯或鐵芯片中心磁場強度最低,而邊緣磁場強度最高。

  在圖2-19-b中,隨著時間線性增長部分是變壓器初級線圈勵磁電流產(chǎn)生的磁場;Hb是為了補償渦流產(chǎn)生的去磁場,而由變壓器初級線圈另外提供電流所產(chǎn)生的磁場。

  從圖2-19-b可以看出,渦流損耗對變壓器鐵芯中磁場強度(平均值)的影響,與變壓器正激輸出時,次級線圈中電流產(chǎn)生的磁場對變壓器鐵芯磁場的影響,基本是一樣的。值得注意的是,如果用同樣方法對y軸方向進行分析,也可以得到同樣的結(jié)果。

  從圖2-19-a可以看出,當(dāng)x =δ/2 時,鐵芯片表面磁場強度的最大值為:

  



關(guān)鍵詞: 開關(guān)電源變壓

評論


技術(shù)專區(qū)

關(guān)閉