測試應用快速擴大陣列持續(xù)推動源測量單元儀器技術
吉時利型號2651A高功率源表儀器包含一個積分ADC和18位高速數(shù)字化ADC,具有每秒讀出高達百萬個讀數(shù)的能力。使用此高速ADC,2651A具有市面上所有SMU中最高的讀出速率,同時仍保持高的測量分辨率。
圖3:型號2651A的18位高速數(shù)字化ADC捕獲300微秒50A的脈沖
圖3解釋了型號2651A高數(shù)字化ADC的能力。此ADC使用400個采樣和一微秒的時間間隔,使得它可以完整捕獲全部300微秒50A的脈沖。有了這樣的功能,型號2651A不需要額外的測試設備,也可以準確地捕捉設備的瞬態(tài)及熱效應。
多通道的可擴展性
無論單個SMU可能的速度有多快,當集成到系統(tǒng)中性能降低的話,它的優(yōu)點也被浪費。部件SMU本質上較少受這個問題的影響,這要歸功于他們的高速及通過PCI或PCIe背板(133MB / S的PCI 250MB / S的PCIe x1)連接到主機系統(tǒng)的低延遲。相反地,基于儀器的SMU是通過外部總線如GPIB和主機系統(tǒng)進行通信,GPIB的速度只是背板速度(1.8MB / s標準)的一小部分。吉時利的工程師在設計2600A系列源表儀器時意識到了這點,并通過使用測試腳本處理器(TSP®)使其脫離主機系統(tǒng)自主運作,并通過稱為TPS-Link®的技術的高速、低延遲總線進行相互通信和同步。
傳統(tǒng)的基于儀器源測量單元(SMU)要求每次從主機的一條總線傳送一個命令,因為所有儀表共用一條總線,每次只能供一個儀表使用和通信。由于總線速度緩慢,大部分時間用于在總線和儀表之間發(fā)送指令和數(shù)據(jù),而其他儀表經(jīng)常閑置。TSP技術允許儀器自主運行主機系統(tǒng)的測試腳本,幾乎省去了傳輸指令的時間。一旦腳本裝入基于TSP的源測量儀表,就可以執(zhí)行整個測試序列,主機只需要傳送一個命令:指示儀器運行腳本。
圖4:TSP-Link網(wǎng)絡實例,含3個源數(shù)據(jù)儀表
TSP-Link省去了連接多個源數(shù)據(jù)儀表的需求,只需一條帶寬有限的GPIB總線就可以滿足需求。有了TSP-Link技術,只需將一個源數(shù)據(jù)儀表與GPIB總線相連,其他源數(shù)據(jù)儀表則與“菊花鏈”配置(通過便宜的CAT5e交叉線連接)相連。首先,通過TSP-Link技術將其他源數(shù)據(jù)儀表連接,這些儀表的源測量單元(SMU)以第一個源數(shù)據(jù)儀表的額外源測量單元(SMU)通道形式出現(xiàn),通過在第一個源數(shù)據(jù)儀表上運行腳本就可以快速訪問。
與組件源測量單元(SMU)不同,利用TSP-Link技術實現(xiàn)的通道擴展不限于主機的少數(shù)插槽。TSP-Link技術的無主機擴展最多允許連接32個儀表,有可能創(chuàng)建一個包含64個源測量單元(SMU)通道的系統(tǒng)。此外,由于源測量單元(SMU)是基于儀表的,可用電源數(shù)量不限于底板提供的電源。即使在基于大功率組件源測量單元(SMU)系統(tǒng)中,某些型號也只能提供最大84W的電源。通過接口TSP-Link可以連接32個2651A型大功率源數(shù)據(jù)儀表,這樣創(chuàng)建的系統(tǒng)就可以提供6.4kW直流電源。
TSP-Link技術提供了一流的系統(tǒng)擴展方法,不需要昂貴的GPIB適配器和線纜,而且通過大量減少儀表與主機之間通信數(shù)量,可以提高系統(tǒng)吞吐量。不過,TSP-Link技術的真實功率在于其同步運行多個測試提高吞吐量的能力。除了源測量單元(SMU),無論它們是在底板上基于組件的SMU還是在GPIB總線上基于儀表的SMU,訪問總線是受限的,主機每次必須向每個SMU發(fā)送命令。為系統(tǒng)增添更多的SMU意味著增加主機必須處理的器件數(shù)量,主機必須向其發(fā)送命令。由于在這些系統(tǒng)中,每次只能向一個SMU發(fā)送命令,因此所有測試都必須按順序進行。
再通過TSP-Link接口連接的系統(tǒng)中,可以對網(wǎng)絡中的儀表進行分組,每組擁有自己的測試腳本處理器,能夠與系統(tǒng)中的任何其他組并行運行腳本。分組中可以包括單一源數(shù)據(jù)表或多個源數(shù)據(jù)表,而且通??梢愿鶕?jù)測試器件所需的SMU通道數(shù)量進行分組。例如,如果正在測試的器件是一個四端口(柵極、漏極、源極、基極)MOSFET,對晶圓進行測試,而且每個管腳需要一個SMU,那么可以將其分組為兩個雙通道源數(shù)據(jù)表,如2636A型雙通道系統(tǒng)源數(shù)據(jù)表。一旦確定分組而且為每組指定運行的腳本,主機就可以通過一個命令指示所有組開始并行運行。由于在內存中已經(jīng)存儲每組的腳本,主機只需再次發(fā)送命令就可以進行反復測試。
以晶片上的4端口MOSFET為例,假設一個TSP-Link網(wǎng)絡包括一個組以及一個完整的測試序列,步驟如下:
主機發(fā)送開始執(zhí)行的命令。
腳本運行并對器件進行一系列完整的測試。
數(shù)據(jù)反饋至主機,同時探測臺將探針移至下一個測試點。
如果整個序列需要1秒鐘完成,那么照此速度,每分鐘就可以測試60個點位。如果為TSP-Link網(wǎng)絡添加另外一組,測試仍然只需1秒鐘完成。不過,增加第二組后,有可能對兩個器件并行測試,因此吞吐量將翻倍,即每分鐘測試120個點位。利用TSP-Link技術,只需為網(wǎng)絡添加分組,就可以提高系統(tǒng)吞吐量。
支持最大性能的I/O連接器
吉時利工程師為源數(shù)據(jù)表選擇了輸入/輸出連接器,旨在為目標應用提供最大性能。對于中級信號范圍,banana連接非常適合傳輸信號并提供最大的易用性,這也是2400 系列源數(shù)據(jù)表提供這種連接的原因。不過,對于那些電流很大或很小的應用H,banana連接則不能支持所需的性能等級,因襲必須使用其他連接器。
對于像2651A型大功率源數(shù)據(jù)表這樣的大電流源數(shù)據(jù)表,其直流電流高達20A,脈沖電流高達50A。
常見的banana連接器的額定電流是15A,接觸電阻高達10 mΩ。在50A電流時,僅這個接觸電阻就將帶來0.5V的壓降。吉時利選擇使用性能更優(yōu)的菲尼克斯連接器,其額定電流高達76A DC。這種連接器的電流容量額定值不僅足以滿足2651A型儀表需求,而且其接觸電阻非常低,不會在測試引線產生過大的壓降,從而實現(xiàn)了性能最大化,減緩上升和穩(wěn)定時間。菲尼克斯連接器的額定接觸電阻僅為0.3 mΩ,在50A電流時的壓降僅為15mV。為了便于器件連接,連接器與螺旋式接線柱已進行匹配,提高了易用性。
評論