新聞中心

EEPW首頁 > EDA/PCB > 設計應用 > 風光逆變并網系統(tǒng)設計與實現(xiàn)

風光逆變并網系統(tǒng)設計與實現(xiàn)

作者: 時間:2012-09-02 來源:網絡 收藏

 0 引言

本文引用地址:http://2s4d.com/article/189968.htm

  近二百年來,人類利用煤、石油及天燃氣作為能源,使生產力提高近200倍。然而化石能源逐步枯竭,而且污染等也很嚴重。隨著能源問題的日益突出,尋找新型綠色能源已經是刻不容緩的問題。而在公認的綠色能源中,數(shù)太陽能和風能是最容易獲取并高效利用的能源。

  本文以太陽能,風能為中心,設計一個發(fā)電的模擬裝置,能夠將太陽能或者風能發(fā)電機的直流電壓轉換為交流電,并檢測外網交流電的頻率和相位,動態(tài)的調整自己的交流電的波形,使得與外網電能同頻同相。該裝置在設計時考慮了發(fā)電機的內阻。在測試時以60 V直流穩(wěn)壓電源模擬理想的太陽能電池板或者風力發(fā)電機,電源輸入級串聯(lián)一個30 Ω功率電阻模擬發(fā)電部分的內阻。

  該裝置體積小巧,成本低廉,易于量產,人界交互界面友好,并附帶輸入電壓監(jiān)控,輸出過流監(jiān)控實時動態(tài)相位監(jiān)控等多種監(jiān)控設置也使得該裝置安全性能很好。稍加改動即可廣泛應用。

  1 方案論證

  1.1 主功率電路拓撲方案

  方案一:全橋。

  全橋由4只功率開關管管組成,分為2組,其中Q1和Q4為一組,Q2和Q3為一組,兩組交替通斷,輸出交流方波電壓經LC低通濾波器后得到交流正弦輸出電壓(見圖1)。全橋型器的輸出濾波電容電壓連續(xù)可測的。該電路輸出經LC濾波后便能得到很好的波形。

360截圖20120902114308687.jpg

方案二:雙Boost DC/AC單級變換電路拓撲結構。

  該結構由2個對稱的電流雙向流動的Boost DC/DC變換電路組成(見圖2)。負載R跨接在兩個電容之間,通過兩邊電流的雙向流動,從而在負載上實現(xiàn)交流工頻電壓輸出的效果。開關M1~M4均為由MOSFET和二極管組成的能量可以雙向流動的可控開關。由于電路工作在完全對稱的狀態(tài)下,因此對L1和L2的選擇特別敏感,如果不對稱則會照成輸出波形失真。

  方案二在正弦的正半軸和負半軸是兩個濾波電路完成的,所以在波形的失真度上完成有難度,而方案一是由同一個電感濾波得到的,濾波后正弦失真度非常小。故采用方案一。

風力發(fā)電機相關文章:風力發(fā)電機原理

上一頁 1 2 3 下一頁

評論


相關推薦

技術專區(qū)

關閉