開關電源傳導EMI預測探討
針對開關電源設計階段應考慮的EMC問題,介紹了PCB及其結構寄生參數(shù)提取和頻域仿真的方法,在開關電源設計階段對其傳導EMI進行預測,定位開關電源傳導EMI傳播路徑的影響因素,在此基礎上給出開關電源PCB及其結構設計的基本原則。對開關電源EMI預測過程中需要注意的問題以及降低開關電源傳導EMI的方法策略進行了分析和總結。
本文引用地址:http://2s4d.com/article/178649.htm1 引言
傳統(tǒng)的EMC的補救辦法只能增加額外的元器件,而增加元件有可能影響原始的控制環(huán)帶寬,造成重新設計整個系統(tǒng)的最壞情況,增加了設計成本。為了避免出現(xiàn)這樣的情況,需要在設計過程中考慮EMC的問題,對開關電源的EMI進行一定精度的分析和預測,并根據(jù)干擾產(chǎn)生的機理及其在各頻帶的分布情況改進設計,降低EMI水平,從而降低設計成本。
2 開關電源EMI特點及分類
對開關電源傳導電磁干擾進行預測,首先需要明確其產(chǎn)生機理以及噪聲源的各項特性。由于功率開關管的高速開關動作,其電壓和電流變化率都很高,上升沿和下降沿包含了豐富的高次諧波,所以產(chǎn)生的電磁干擾強度大;開關電源的電磁干擾主要集中在二極管、功率開關器件以及與其相連的散熱器和高頻變壓器附近;由于開關管的開關頻率從幾十kHz到幾MHz,所以開關電源的干擾形式主要是傳導干擾和近場干擾。其中,傳導干擾會通過噪聲傳播路徑注入電網(wǎng),干擾接入電網(wǎng)的其他設備。
開關電源傳導干擾分為2大類。
1)差模(DM)干擾。DM 噪聲主要由di/dt引起,通過寄生電感,電阻在火線和零線之間的回路中傳播,在兩根線之間產(chǎn)生電流Idm,不與地線構成回路。
2)共模(CM)干擾。CM 噪聲主要由dv/dt引起,通過PCB的雜散電容在兩條電源線與地的回路中傳播,干擾侵入線路和地之間,干擾電流在兩條線上各流過二分之一,以地為公共回路;在實際電路中由于線路阻抗不平衡,使共模信號干擾會轉化為不易消除的串擾干擾。
3 開關電源EMI的仿真分析
從理論上來講,無論是時域仿真還是頻域仿真,只要建立了合理的分析模型,其仿真結果都能正確反映系統(tǒng)的EMI量化程度。
時域仿真方法需要建立變換器中包含所有元件參數(shù)的電路模型,利用PSPICE或Saber軟件進行仿真分析,使用快速傅里葉分析工具得到EMI的頻譜波形,這種方法在DM 噪聲的分析中已經(jīng)得到了驗證。然而開關電源中的非線性元件如MOSFET,IGBT 等半導體器件,其非線性特性和雜散參數(shù)使模型非常復雜,同時開關電源電路工作時其電路拓撲結構不斷改變,導致了仿真中出現(xiàn)不收斂的問題。在研究CM 噪聲時,必須包含所有的寄生元件參數(shù),由于寄生參數(shù)的影響,F(xiàn)FT結果和實驗結果很難吻合;開關功率變換器通常工作在很大的時間常數(shù)范圍內,主要包括3組時間常數(shù):與輸出端的基本頻率有關的時間常數(shù)(幾十ms);與開關元件的開關頻率有關的時間常數(shù)(幾十μs);與開關元件導通或關斷時的上升時間和下降時間有關的時間常數(shù)(幾ns)。
正因如此,在時域仿真中,必須使用非常小的計算步長,并且需要用很長時間才能完成計算;另外,時域方法得到的結果往往不能清晰地分析電路中各個變量對干擾的影響,不能深層解釋開關電源的EMI行為,而且缺乏對EMI機理的判斷,不能為降低EMI給出明確的解決方案。
頻域仿真是基于噪聲源和傳播途徑阻抗模型基礎上的分析方法。利用LISN為噪聲源提供標準負載阻抗。如圖1所示,從LISN看過去,整個系統(tǒng)可以簡化成噪聲源、噪聲路徑和噪聲接收器(LISN)。頻域方法可以大大降低仿真計算的時間,一般不會出現(xiàn)計算結果不收斂的情況。
圖1 噪聲源與傳播路徑概念
圖1中,噪聲路徑包括PCB傳導、耦合路徑,散熱片電容耦合路徑,變壓器耦合路徑等。
評論