新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 基于dsPIC的PV逆變器的一種改進(jìn)結(jié)構(gòu)及其實(shí)現(xiàn)

基于dsPIC的PV逆變器的一種改進(jìn)結(jié)構(gòu)及其實(shí)現(xiàn)

作者: 時(shí)間:2012-04-25 來(lái)源:網(wǎng)絡(luò) 收藏

摘要:針對(duì)目前光伏并網(wǎng)發(fā)電系統(tǒng)的核心的現(xiàn)狀、和控制方法進(jìn)行了詳細(xì)的分析,從電網(wǎng)、系統(tǒng)及用戶的需求出發(fā),指出傳統(tǒng)的單級(jí)全橋普遍具有不能處理較寬的輸入電壓,且需要重型工頻升壓變壓器等缺點(diǎn)。在此基礎(chǔ)上,本文創(chuàng)新設(shè)計(jì)并了一種單級(jí)全橋的并聯(lián)耦合。實(shí)測(cè)證明這種并聯(lián)耦合反激可以有效地減小通過(guò)大容量輸入電解電容的紋波電流的RMS,從而延長(zhǎng)電容的壽命;還可減小輸出電流的紋波,從而降低輸出電流的THD(諧波失真);還可適應(yīng)較寬的輸入電壓,減小交流紋波,減小磁芯,同時(shí)可以提供較高的額定輸出電流等優(yōu)點(diǎn)。
關(guān)鍵詞:光伏并網(wǎng)發(fā)電系統(tǒng);并聯(lián)耦合;反激式轉(zhuǎn)換器;SCR全橋電路

0 引言
PV系統(tǒng)作為一種便捷和前景廣闊的可再生能源,與風(fēng)能等其他形式的可再生能源相比,PV能源系統(tǒng)具備許多優(yōu)勢(shì)。如能夠?yàn)閱螇K面板和整個(gè)系統(tǒng)提供最佳轉(zhuǎn)換效率,更低的安裝成本等。但是目前大多數(shù)PV系統(tǒng)的核心都采用單級(jí)全橋逆變器結(jié)構(gòu),這種結(jié)構(gòu)不能有效使用較寬的輸入PV電壓,而且變壓器磁芯體積較大,實(shí)際使用中會(huì)產(chǎn)生較大的交流紋波。為適應(yīng)大的輸入電壓范圍,通常使用兩級(jí)拓?fù)?,但是尤其是?duì)于單PV電池板系統(tǒng)而言,兩級(jí)拓?fù)鋾?huì)使系統(tǒng)變得成本高昂且復(fù)雜。為了簡(jiǎn)化系統(tǒng),本文提出并了一種采用并聯(lián)耦合的單級(jí)拓?fù)浣Y(jié)構(gòu),實(shí)際證明采用這種型結(jié)構(gòu)可以有效的解決上述矛盾。

1 系統(tǒng)原理
本文設(shè)計(jì)采用反激式轉(zhuǎn)換器來(lái)產(chǎn)生與電網(wǎng)同相和同步的正弦輸出電壓和電流。該微逆變器可以和如下參數(shù)的PV模塊連接:在DC25~45 V的輸入電壓范圍內(nèi),可輸出最大220 W的功率,最大開(kāi)路電壓為55 V。由于逆變器需要接入電網(wǎng),則設(shè)計(jì)符合EN61000-3-2、IEEE 1547標(biāo)準(zhǔn)和美國(guó)國(guó)家電氣規(guī)范(NEC)690等標(biāo)準(zhǔn)。

本文引用地址:http://2s4d.com/article/177424.htm

b.JPG


如圖1所示,將太陽(yáng)能微型逆變器模塊接入電網(wǎng)包含兩個(gè)主要工作:一是確保太陽(yáng)能微型逆變器模塊工作于最大功率點(diǎn)(MPP);二是將正弦電流注入電網(wǎng)。圖中微逆變器主要負(fù)責(zé)把PV電池板的輸出電壓轉(zhuǎn)換成與電網(wǎng)同相的正弦輸出電流和電壓。電壓轉(zhuǎn)化的過(guò)程必須在其最大功率點(diǎn)(Maximum Power Point,MPP)完成。MPP是PV模塊向負(fù)載提供最大能量時(shí)的PV輸出電壓。
EMI/EMC濾波器主要用于抑制EMI/EMC噪聲,并在逆變器輸出和電網(wǎng)間提供阻抗。控制器和所有反饋電路的輔助電源由PV電池板電壓提供。核心控制器采用Microchip33F“GS”系列器件(33FJ16GS504),用來(lái)控制從PV電池板流向電網(wǎng)的功率。同時(shí)該MCU還負(fù)責(zé)MPPT算法、故障控制,以及數(shù)字通信程序。并網(wǎng)太陽(yáng)能微逆變器的關(guān)鍵要求是在受太陽(yáng)能照射和環(huán)境溫度變化影響所導(dǎo)致的寬范圍的輸入電壓和輸入功率下提供高效率。而且,微逆變器必須高度可靠,即使用壽命長(zhǎng)。

2 主要模塊設(shè)計(jì)
2.1 并聯(lián)耦合反激式轉(zhuǎn)換器模塊
如圖2所示,并聯(lián)耦合反激轉(zhuǎn)換器可有效地減小通過(guò)大容量輸入電解電容的紋波電流的RMS,從而延長(zhǎng)電容的壽命。并聯(lián)耦合反激還可減小輸出電流的紋波,從而降低輸出電流的THD(諧波失真)。來(lái)自PV模塊的直流輸入被饋送到反激初級(jí)。反激MOSFET可由經(jīng)調(diào)制的高頻正弦PWM驅(qū)動(dòng),以在反激輸出電容上產(chǎn)生整流的正弦輸出電壓/電流。兩個(gè)反激轉(zhuǎn)換器的工作相位相差180°,以交錯(cuò)運(yùn)行。反激結(jié)構(gòu)有兩種工作模式。模式1:當(dāng)反激MOSFET導(dǎo)通時(shí),能量存儲(chǔ)在反激變壓器的初級(jí)。二極管(D1/D2)處于截止?fàn)顟B(tài),因?yàn)槭┘拥皆摱O管上的電壓與變壓器次級(jí)繞組形成反向偏置。在此期間,反激變壓器像電感那樣工作,變壓器的初級(jí)電流(Ipei1/Ipri2)線性增大。負(fù)載電流由輸出電容提供。模式2:當(dāng)反激MOSFET關(guān)斷時(shí),施加在初級(jí)繞組上的電壓會(huì)反向,從而產(chǎn)生次級(jí)繞組的電壓,該電壓使輸出二極管(D1/D2)正向偏置。初級(jí)中存儲(chǔ)的能量會(huì)傳送到次級(jí),這會(huì)使輸出電容充電并為負(fù)載提供電流。在此期間,輸出電壓會(huì)直接施加于變壓器次級(jí)繞組,進(jìn)而使二極管電流線性減小。緩沖電路二極管、電容和有源鉗位電路MOSFET以及電容用于將反激初級(jí)MOSFET電壓鉗位在安全值。經(jīng)調(diào)制的正弦PWM產(chǎn)生經(jīng)調(diào)制的正弦初級(jí)MOSFET電流,從而產(chǎn)生二極管的次級(jí)二極管電流。經(jīng)調(diào)制的正弦次級(jí)二極管電流的平均值會(huì)在輸出電容上產(chǎn)生整流正弦電壓/電流。

c.JPG


上一頁(yè) 1 2 3 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉