新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 信號鏈基礎(chǔ)知識 68:探討可編程增益放大器驅(qū)動參考引腳

信號鏈基礎(chǔ)知識 68:探討可編程增益放大器驅(qū)動參考引腳

作者: 時間:2013-01-28 來源:網(wǎng)絡(luò) 收藏

(PGA) 是特殊的結(jié)構(gòu)(請參見圖 1),具有經(jīng)過修整的內(nèi)部電阻器網(wǎng)絡(luò),擁有比采用離散式電阻器組件的更高的性能。正如圖 1 中 PGA 傳輸函數(shù)所顯示那樣,PGA 輸出的絕對誤差與內(nèi)部偏移電壓(VOS)、精度和 VREF 絕對精度有關(guān)。

本文引用地址:http://2s4d.com/article/175900.htm
圖 1 相應(yīng)傳輸函數(shù)的PGA 配置舉例.jpg

圖 1 相應(yīng)傳輸函數(shù)的PGA 配置舉例

在一些使用 PGA 的應(yīng)用中,關(guān)鍵的 DC 規(guī)范為 VOS、精度與偏移、噪聲以及靜態(tài)功耗。如果引腳 VREF 不以運算放大器緩沖電路,則 PGA 傳輸函數(shù)的精度會受到極大影響。另外,從 AC 的角度來看,一個常見的難題是維持頻率下的增益精度,其會受到引腳電壓 VREF 以及對它起到緩沖作用的運算放大器的影響。

考慮到帶寬、AOL(ω)、RO(ω) 和運算放大器緩沖電路的反饋系數(shù) (β)(請參見圖 2)大小的情況下,我們便可以更好地理解運算放大器效應(yīng)對 VREF 所產(chǎn)生的影響。

圖 2 Vref 緩沖分壓器電壓.jpg

圖 2 Vref 緩沖分壓器電壓

由于緩沖器本身 β = 1,因此輸出電壓 VREF 等于 AOLVIN。VREF 流入緩沖放大器反相輸入端的輸入偏置電流,決定了負載電流的大小程度。這一點非常重要,因為負載電流的大小會調(diào)節(jié)環(huán)路增益 (AOLβ) 和閉環(huán)輸出阻抗 ROUT。

圖 2 顯示了 VREF 緩沖器的閉環(huán)內(nèi)部電路:Rout、Ro 和 AOL 之間的重要關(guān)系如方程式 1 所示:

方程式 1.jpg

方程式 1

總之,隨著頻率不斷增加,運算放大器通過減小 AOL、增加 Rout 以及延長穩(wěn)定時間來保持固定輸出電壓和低阻抗的能力下降。這會影響 PGA 增益誤差的精度。

為了方便說明,請思考圖 3 所示單端 PGA 之例。輸入 VIN 有其 DC 組成部分 (2.5V),而 AC 為一個 200 mVpp、5 kHz 正弦波:

圖 3 緩沖器單端 PGA.jpg

圖 3 緩沖器單端 PGA

圖 4 以 TINA Spice 中的“萬用表”功能對圖 5 進行分析.jpg

圖 4 以 TINA Spice 中的“萬用表”功能對圖 5 進行分析

我們可以利用 TINA Spice 中的“萬用表”功能(請參見圖 4),獲得輸入電壓對輸出電壓的 RMS 值,并用其計算總輸出誤差,具體計算方法如方程式 2 和 3:

方程式 2.jpg

方程式 2

方程式 3.jpg

方程式 3

例如,微功耗精密運算放大器 OPA333 便擁有 ~350 kHz 的增益帶寬 (GBW) 積。因此,在 5 kHz下,閉環(huán)特性會下降到造成第二個運算放大器(如OPA376)輸出端產(chǎn)生 0.08% 誤差的程度。若使用一個更高 GBW 的放大器(如:另一個精密運算放大器)便可減小這種誤差。

通過在 TINA SPICE 中繪制出傳輸函數(shù) (VOUT/VIN) 與頻率曲線圖的關(guān)系圖,我們可以直觀地看到改變阻抗頻率的效果(請參見圖 5)。請注意,相比 OPA333, OPA376 當作緩沖器時,增益與頻率的關(guān)系更加恒定:

圖 5 OPA333 和 OPA376 緩沖器比較圖.jpg

圖 5 OPA333 和 OPA376 緩沖器比較圖

結(jié)果表明,把一個帶寬較高的運算放大器(例如:OPA376 等)用作 VREF 緩沖放大器,可明顯改善總輸出誤差。

下次,我們將討論音頻處理系統(tǒng)中不斷增加的 THD(原因和方法分析)。

電子管相關(guān)文章:電子管原理




評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉