設(shè)計(jì)面向高級數(shù)據(jù)系統(tǒng)的高效、高功率DC/DC電源架構(gòu)
在人們不斷追求更高的系統(tǒng)工作效率和性能的過程中,數(shù)據(jù)存儲和通信系統(tǒng)中的數(shù)字及混合信號組件的工作輸入電壓呈現(xiàn)出日益走低的趨勢。在許多場合中,此類系統(tǒng)內(nèi)部的大多數(shù)組件所需的最大輸入電壓如今僅為 3.3V。在這種情況下,可以對傳統(tǒng)的 5V 或 12V 中間電壓軌進(jìn)行旁路,并將 24VDC 或 48VDC 背板分配電壓直接轉(zhuǎn)換為一個(gè) 3.3V 的兩用總線和電源軌。很多高功率 DC/DC 磚式模塊供應(yīng)商 (例如:Emerson 和 TDK-Lambda 公司) 已經(jīng)認(rèn)識到這一發(fā)展趨勢,他們通過大幅提升其在高降壓比操作中的性能輕松地實(shí)現(xiàn)了 92% 的效率指標(biāo)。利用該 3.3V 中間總線,后續(xù)的負(fù)載點(diǎn)穩(wěn)壓器可產(chǎn)生更低的電壓 (即:2.5V、1.2V、1.0V 等),以用于給電源存儲器、ASIC / FPGA 內(nèi)核及高速 I/O 等等供電。
本文引用地址:http://2s4d.com/article/127660.htm從中間總線進(jìn)行直接轉(zhuǎn)換可提供另一項(xiàng)優(yōu)勢,就是可以減少印刷電路板 (PCB) 中用于完成電源軌至負(fù)載布線所需的銅箔層數(shù)。以一塊具有一個(gè)僅用作中間總線的 5V 電壓軌的 PCB 為例,它包含兩個(gè)用于支持 3.3V 和 1.8V 電壓軌的 DC/DC 轉(zhuǎn)換器。采用一根 3.3V 中間總線和單個(gè) 3.3V 至 1.2V 轉(zhuǎn)換器重新設(shè)計(jì)的相同電路板將很有可能具有較少的銅箔層 (3 個(gè)電壓軌現(xiàn)減為 2 個(gè))。在電路板上最終形成的總體解決方案其尺寸是極具吸引力的,同時(shí)免除了將 5V 電位傳送至 PCB 的某個(gè)完整部分的需要。在 PCB 的制造過程中盡可能減少銅箔層數(shù)的選項(xiàng)具有降低成本與節(jié)省材料的潛力,并有望改善良率及可靠性。
另外,對于從諸如超級電容器等后備電源來實(shí)現(xiàn)系統(tǒng)運(yùn)作而言,較低電壓的中間總線軌也是很合適的。與電池相比,超級電容器可支持較高的峰值電流、功率密度、較寬的工作溫度范圍和較低的 ESR,因而越來越多地被用作短時(shí)供電電源,以對電池后備系統(tǒng)提供補(bǔ)充。 由于超級電容器的最大充電電壓僅為 2.3V 至 2.7V,因此,使用高效率的低輸入電壓降壓型轉(zhuǎn)換器能夠最大限度地增加系統(tǒng)準(zhǔn)備時(shí)間,以在主電源重新接通之后實(shí)現(xiàn)快速系統(tǒng)恢復(fù)。
傳統(tǒng)解決方案的局限性
采用傳統(tǒng)的 DC/DC 降壓型解決方案時(shí),開關(guān)穩(wěn)壓器或開關(guān)控制器需要一個(gè)大約 5V 的最小輸入電壓或偏置電壓,用于驅(qū)動 N 溝道功率 MOSFET。在電流傳導(dǎo)期間,需要利用該最小電壓將功率 MOSFET 驅(qū)動至低導(dǎo)通電阻區(qū)域。對于改善工作效率 (特別是在網(wǎng)絡(luò)及存儲系統(tǒng)中經(jīng)常遇到的大電流條件下) 的努力而言,導(dǎo)通電阻的任何增加都是不利的。對那些通過將中間軌電壓降至最低的組件輸入電源電壓 (比如 3.3V) 以設(shè)法提高工作效率和降低生產(chǎn)成本的系統(tǒng)來說,所面臨的挑戰(zhàn)是如何最好地支持電流消耗通常僅為 50mA~100mA 的偏置電源 —— 增設(shè)一個(gè) 5V 輸出高電壓降壓型穩(wěn)壓器;增設(shè)一個(gè)升壓型轉(zhuǎn)換器 (從 3.3V);或者繼續(xù)使用現(xiàn)有的 5V 中間總線。在組件數(shù)目、設(shè)計(jì)工作量、PCB 復(fù)雜性、可靠性、成本及工作效率方面,上述的選擇方案均需要采取一些令人不快的折衷措施。
一種更好的替代解決方案
另一種旨在解決本文前面所提及的低工作輸入電壓難題的可選方案是 LTM4611 降壓型 µModule® 穩(wěn)壓器。該器件隸屬于一個(gè)新的 DC/DC 轉(zhuǎn)換器系列,是從傳統(tǒng)型開關(guān)電源管理解決方案發(fā)展而來,幾乎將開關(guān)轉(zhuǎn)換器的所有組件 (包括電感器) 都集成到了一個(gè)緊湊的表面貼裝型封裝之中。LTM4611 電源模塊采用 1.5V 至 5.5V 的單工作輸入電壓軌,并將其降壓為一個(gè)低至 0.8V 的輸出電壓,且可提供高達(dá) 15A 的輸出電流。完全內(nèi)置于一個(gè) LGA 封裝之內(nèi)的自生成偏置電源可支持從單個(gè)低電壓電源來運(yùn)作。圖 1 示出了一款針對全面運(yùn)行的 15A 降壓型解決方案的 LTM4611 電路原理圖。由圖可以明顯地看出:該電路所需的外部組件極少,可實(shí)現(xiàn)緊湊型解決方案和簡單的 PCB 布局。
圖 1:一款完整的電壓轉(zhuǎn)換器原理圖 (用于從 2.1V 至 5.5V 單輸入運(yùn)作以提供一個(gè) 1.8V/15A 輸出)
工作效率比較
從效率的觀點(diǎn)來證明傳統(tǒng)三級降壓架構(gòu)的合理性是非常棘手的,因?yàn)榉峙潆妷很壟c負(fù)載之間的每個(gè)降壓級的效率都必須遠(yuǎn)遠(yuǎn)高于兩級解決方案。圖 2 示出了先前提出的 5V 中間總線選項(xiàng)以及利用 LTM4611 µModule 穩(wěn)壓器實(shí)現(xiàn)的 3.3V 中間總線。在這兩種情況下,48V 降壓均被模擬為一個(gè) 75W Emerson (前 Artesyn) 1/8 磚單輸出轉(zhuǎn)換器,其 1.8V 和 3.3V 電壓軌承受著 10A 負(fù)載。在傳統(tǒng)的三級降壓架構(gòu)中,5V 至 3.3V 和 5V 至 1.8V 降壓型轉(zhuǎn)換器被模擬為 µModule 穩(wěn)壓器系列中的另一款器件。
圖 2:三級與兩級降壓架構(gòu)示意圖 (給出了各自在 10A 輸出電流條件下完成從 48VDC 至 3.3VDC 及 1.8VDC 轉(zhuǎn)換時(shí)的總功率損耗)
圖 3:三級與兩級轉(zhuǎn)換的效率和功率損耗比較 (從 48VDC 至 3.3VDC 和 1.8VDC)
對于越來越多的產(chǎn)品而言,相比于降低重負(fù)載時(shí)的功率損耗,減少輕負(fù)載時(shí)的功率損耗具有同等的重要性 —— 假如不說更重要的話。子系統(tǒng)被設(shè)計(jì)成盡可能長地工作于較低功耗的待機(jī)或睡眠狀態(tài) (旨在節(jié)能),并只在需要時(shí)候吸取峰值功率 (滿負(fù)載)。LTM4611 支持脈沖跳躍模式和突發(fā)模式 (Burst Mode®) 操作,與連續(xù)導(dǎo)通模式相比,其在低于3A負(fù)載電流條件下的效率水平有了大幅度的提升。
多個(gè)電源的均流以提供 60A 或更大的輸出電流
對于需要提供高達(dá)60A輸出的電源軌,可支持多達(dá) 4 個(gè) LTM4611 µModule 穩(wěn)壓器的均流。電流模式控制使得模塊的均流特別可靠且易于實(shí)現(xiàn),同時(shí)在啟動、瞬變及穩(wěn)態(tài)操作情況下甚至可以確保模塊之間的均流。
相比之下,許多電壓模式模塊則是通過采用主-從配置或“壓降均分 (droop-sharing)”(也被稱為“負(fù)載線路均分”) 來實(shí)現(xiàn)均流。在啟動和瞬態(tài)負(fù)載條件下,主-從模式容易遭受過流跳變,而壓降均分則會導(dǎo)致負(fù)載調(diào)節(jié)指標(biāo)下降,且在瞬態(tài)負(fù)載階躍期間幾乎無法保證優(yōu)良的模塊至模塊電流匹配。LTM4611 通常可在無負(fù)載至滿負(fù)載范圍內(nèi)提供優(yōu)于 0.2% 的負(fù)載調(diào)節(jié) —— 在 -40ºC 至 125ºC 的整個(gè)內(nèi)部模塊溫度范圍內(nèi)則可達(dá) 0.5% (最大值)。
負(fù)載上的準(zhǔn)確穩(wěn)壓
高電流低電壓 FPGA、ASIC、微處理器 (μP) 等常常需要在封裝端子 (例如:VDD 和 DGND 引腳) 上提供經(jīng)過精確調(diào)節(jié)的極其準(zhǔn)確的電壓 —— 標(biāo)稱 VOUT 的 ±3% (或更好)。在如此高的電流水平和低電壓電平下,PCB 走線中的阻性分配損耗有可能對負(fù)載上的電壓產(chǎn)生影響。為了滿足針對低輸出電壓的這一嚴(yán)格的穩(wěn)壓要求,LTM4611 提供了一個(gè)單位增益差分放大器,用于在電壓低于或等于 3.7V 的情況下在負(fù)載端子上進(jìn)行遠(yuǎn)端采樣。由圖 1 可見,POL 兩端的差分反饋信號 (VOSNS+ – VOSNS−) 在 DIFF_VOUT 上被重構(gòu) (相對于模塊的局部地 SGND),從而使得控制環(huán)路能夠?qū)δK的輸出引腳與 POL 器件之間的功率輸送通路中的任何壓降進(jìn)行補(bǔ)償。
當(dāng) LTM4611 的輸出電壓處于標(biāo)稱 VOUT 的 ±5% 之內(nèi)時(shí),一個(gè)內(nèi)部輸出電壓電源良好 (PGOOD) 指示器引腳將提供一個(gè)邏輯高電平漏極開路信號;否則,PGOOD 引腳將被拉至邏輯低電平。當(dāng)輸出電壓超過了標(biāo)稱值的 107.5% 時(shí),將觸發(fā)輸出過壓保護(hù)功能電路并接通內(nèi)部低端 MOSFET,直到這種輸出電壓過高的狀況被清除為止。折返電流限制可在輸出短路的情況下保護(hù)上游電源和器件本身。
耐熱性能增強(qiáng)型封裝
該器件的 LGA 封裝允許從頂部和底部散失熱量,因而便于使用金屬底盤或 BGA 散熱器。不管有沒有冷卻氣流,這種封裝的外形均有利于實(shí)現(xiàn)卓越的熱耗散。圖 4 示出了 LTM4611 頂面的 IR 熱成像圖,由圖可見:當(dāng)執(zhí)行 1.8V 輸入至 1.5V/15A 輸出轉(zhuǎn)換且無冷卻氣流時(shí),在實(shí)驗(yàn)臺上測得的功率損耗僅為 3.2W。
如前文所述,在 1.8V 的低輸入電壓條件下,為了以足夠的幅度驅(qū)動?xùn)艠O以使功率 MOSFET 完全飽和,不具備偏置電源的傳統(tǒng)型電源 IC 解決方案將會十分吃力。因此,其熱性能將低于 LTM4611 所能提供的水平 (如圖 4 所示),這是由于后者具有內(nèi)部微功率偏置發(fā)生器。
圖 4:LTM4611 穩(wěn)壓器從一個(gè) 1.8V 輸入產(chǎn)生 1.5V/15A 輸出時(shí)的頂部熱成像圖。功率損耗為 3.2W。無冷卻氣流情況下的實(shí)驗(yàn)臺測試產(chǎn)生了一個(gè) 65ºC 的表面溫度熱點(diǎn)。
縮減占板面積
LTM4611 內(nèi)置于一種耐熱性能增強(qiáng)型 LGA (焊盤網(wǎng)格陣列) 封裝,具有小巧的焊盤圖形 (僅 15mm x 15mm) 和實(shí)際體積 (高度僅為 4.32mm —— 占用的空間只有區(qū)區(qū) 1cm3),可提供引人注目的效率。除了高效率之外,在給定的輸入電壓條件下,LTM4611 的功耗曲線相對平坦,從而使 LTM4611 的熱設(shè)計(jì)以及在后續(xù)產(chǎn)品中的重復(fù)使用變得簡單易行 —— 即使在中間總線電壓由于 IC 芯片不斷縮小而日益下降的情況之下也不例外。
一款可靠的解決方案
凌力爾特公司的 µModule 穩(wěn)壓器 (比如:LTM4611) 按照與產(chǎn)品序列中的其他封裝集成電路一樣嚴(yán)格的標(biāo)準(zhǔn)進(jìn)行測試。在向公眾發(fā)布之前,產(chǎn)品必須順利地通過一系列的測試,例如:依據(jù) JEDEC 規(guī)范進(jìn)行的工作壽命測試、+85℃/85% 溫度-濕度偏置、溫度循環(huán)、機(jī)械沖擊、振動等等。這種原則使工程師們擁有了十足的信心:這些高集成度解決方案完全能夠提供堪與傳統(tǒng)開關(guān)轉(zhuǎn)換器相媲美的可靠性,而后者卻需要具有眾多相關(guān)聯(lián)的外部組件,必須由采購、制造和質(zhì)量部門進(jìn)行購置、裝配和檢驗(yàn)。
結(jié)語
業(yè)界迫切需提高速度性能和降低功耗,因而促使數(shù)字組件的工作電壓不斷降低。為了適應(yīng)這一發(fā)展趨勢,DC/DC磚型模塊供應(yīng)商正在推出能夠以很高的效率直接將分配電壓軌 (24V 或 48V) 降壓至一個(gè)低于 5V 的輸出電壓之新型器件。完全為了有效運(yùn)行傳統(tǒng)開關(guān)轉(zhuǎn)換器而產(chǎn)生一個(gè) 5V 偏置電壓軌的做法會增加不希望的成本、功耗、復(fù)雜性或組件。LTM4611 內(nèi)置于單個(gè) LGA 封裝 (許多其他的集成電路都采用這種封裝) 之中,其在整個(gè)輸入電壓范圍內(nèi)保持了高效率和上佳的熱性能。LTM4611 是一款簡潔和高度可靠的降壓型穩(wěn)壓器,可輕松適應(yīng)那些需要從低至 1.5V 的輸入電壓提供高輸出電流的負(fù)載點(diǎn)應(yīng)用,并降低了采用 “額外”電壓軌的必要性。
超級電容器相關(guān)文章:超級電容器原理
評論