功率因數控制(pfc) 文章 進入功率因數控制(pfc)技術社區(qū)
基于Microchip dsPIC33CK256MP506的3.3KW雙向圖騰柱PFC逆變電源方案
- 隨著新時代社會經濟爆發(fā)式發(fā)展,全球能源結構深刻變革,近幾年全球對家用儲能系統(tǒng)的需求也迅速增長。家庭儲能系統(tǒng),在用電低谷時,戶用儲能系統(tǒng)中的電池組能夠自行充電,以備在用電高峰或斷電時使用。根據 Wood Mackenzie, IEA, SolarpowerEU,USDOE 的數據,全球戶用儲能市場新增裝機規(guī)模預計從 2021 年的 9.5GWh 上升至2025 年的 93.4GWh,復合增長率達 77.07%。2023年全球家用儲能系統(tǒng)市場銷售額為87.4億美元,預計2029年將達498.6億美
- 關鍵字: Microchip dsPIC33CK256MP506 DSP 雙向圖騰柱 PFC 逆變電源
潛在的固件錯誤可能是導致控制不穩(wěn)定的幕后黑手!
- 本期,我們將聚焦于發(fā)生在 PFC 級的電流振蕩,通過分析數字控制環(huán)路,了解潛在錯誤出現的原因并展示如何檢查控制固件中是否出現這種不穩(wěn)定性。在設計諸如升壓功率因數校正 (PFC) 之類的數字電源時,您是否見過類似圖 1 中的電流振蕩?圖 1. 電流振蕩發(fā)生在 PFC 級您可能認為這種不穩(wěn)定振蕩由過快的控制帶引起,因此您減小比例積分 (PI) 控制器的比例增益 (Kp) 和積分增益 (Ki),并顯著降低交叉頻率。振蕩就會消失。但這是最佳解決方案嗎?較低的電流環(huán)路帶寬會降低控制速度,但您可能
- 關鍵字: PFC 電流振蕩 數字控制環(huán)路
實現3.3KW高功率密度雙向圖騰柱PFC數字電源方案
- 隨著社會經濟發(fā)展、能源結構變革,近幾年全球對家用儲能系統(tǒng)的需求量一直保持相當程度的增長。2023年,全球家用儲能系統(tǒng)市場銷售額達到了87.4億美元,預計2029年將達到498.6億美元,年復合增長率(CAGR)為33.68%(2023-2029);便攜儲能市場經過了一輪爆發(fā)式增長的狂歡后,現在也迎來了穩(wěn)定增長期,從未來看,預計在2027年便攜儲能市場將達到900億元;AI Server市場規(guī)模持續(xù)增長,帶來了數字化、智能化服務器所需的高功率服務器電源的需求,現在單機3KW的Power也成為了標配。對于
- 關鍵字: Infineon XMC1400 CoolSiC Mosfet 高功率密度 雙向圖騰柱 PFC 數字電源
設計三相PFC請務必優(yōu)先考慮這幾點
- 三相功率因數校正(PFC)系統(tǒng)(或也稱為有源整流或有源前端系統(tǒng))正引起極大的關注,近年來需求急劇增加。之前我們介紹了三相功率因數校正系統(tǒng)的優(yōu)點。本文為系列文章的第二部分,將主要介紹設計三相PFC時的注意事項。在設計三相PFC時應該考慮哪些關鍵方面?對于三相PFC,有多種拓撲結構,具體可根據應用要求而定。不同的應用在功率流方向、尺寸、效率、環(huán)境條件和成本限制等參數方面會有所不同。在實施三相PFC系統(tǒng)時,設計人員應考慮幾個注意事項。以下是一些尤其需要注意的事項:■ 單極還是雙極(兩電平或三電平)■ 調制方案■
- 關鍵字: PFC 轉換器 功率模塊 拓撲結構
揭秘三相功率因數校正 (PFC) 拓撲結構
- 三相功率因數校正 (PFC) 系統(tǒng)(或也稱為有源整流或有源前端系統(tǒng))正引起極大的關注,近年來需求急劇增加。推動這一趨勢的主要因素有兩個。本文為系列文章的第一部分,將主要介紹三相功率因數校正系統(tǒng)的優(yōu)點。圖1總結了一些需要PFC前端的常見應用。首先是汽車電子,經過幾年的發(fā)展,該領域增長動力強勁,預計未來五年的復合年增長率將達到 30%。充電基礎設施,尤其是快速直流 EV 充電樁,需要跟上電動汽車的發(fā)展步伐,以有效推動電動汽車的普及。這些 AC/DC 轉換系統(tǒng)需要在前端使用三相 PFC 拓撲結構,以高效
- 關鍵字: 三相功率因數校正 PFC 電網 開關電源 電磁干擾
常見三相PFC結構的優(yōu)缺點分析,一文get√
- 為了滿足應用的要求,為PFC選擇的拓撲結構是一個重要考慮因素,它們將決定整體的解決方案和性能。此外,并非所有拓撲結構都可以滿足所有要求,就像并非所有拓撲結構都支持三電平開關或雙向性。本文將介紹一些常見的三相拓撲結構并討論它們的優(yōu)缺點。Vienna整流器(三開關升壓)在深入研究Vienna整流器的技術細節(jié)和特征之前,有必要了解一下它的歷史,但更重要的是,我們要就所討論的內容達成共識。Vienna整流器是一種脈寬調制整流器,由 Johann W. Kolar于1993年發(fā)明。在Kolar發(fā)明它之前,人們使用每
- 關鍵字: PFC 拓撲結構 整流器 三開關升壓 雙向開關
基于ST CCM PFC L4986A 設計的1KW 雙BOOST PFC電源方案
- L4986簡介:L4986是一款峰值電流模式PFC升壓控制器,采用專有的乘法器“模擬器”,除了創(chuàng)新型THD優(yōu)化器,還保證在所有工條件下具有非常低的總諧波失真(THD)性能。該器件引腳采用SO封裝,集成了800V 高壓啟動功能,無需使用傳統(tǒng)的放電電阻??梢灾С值墓β史秶鷱囊粌砂偻叩綆浊摺?ST 提供兩個版本:A為65 kHz,B為130 kHz。本案例方案中使用的是65K A版本。Double -boost 電路簡介:Double-boost 是無橋PFC的一種, 去掉了大功耗的整流橋,可以顯著提
- 關鍵字: ST SIC 第三代半導體 CCM PFC 4986 電動工具 割草機 雙boost double boost 無橋PFC
基于onsemi NCP1618多模式PFC 500W設計方案
- 近年來隨著應用技術不斷推陳出新,造就終端應用的功率需求越來越大,例如:5G網通電源供應器、ATX/Gaming電源供應器等等,功率消耗大于一程度時電源供應器就要有功率因數校正(Power Factor Correction, PFC)的功能,以歐盟EN61000-3-2規(guī)范要求,所有電子產品輸入功率大于75W時,其電源供應都需要有功率因數校正的機能。另外,在規(guī)格要求也越來越嚴苛,以往可能只要求滿載下效率與功率因數PF值等,目前會要求在某負載范圍下效率都要達到一定的程度,且PF值也要達到一定的數
- 關鍵字: onsemi power 安森美 NCP1618 Multi-mode PFC ATX power Gaming power Networking 電競電源 網通電源
功率因數控制(pfc)介紹
您好,目前還沒有人創(chuàng)建詞條功率因數控制(pfc)!
歡迎您創(chuàng)建該詞條,闡述對功率因數控制(pfc)的理解,并與今后在此搜索功率因數控制(pfc)的朋友們分享。 創(chuàng)建詞條
歡迎您創(chuàng)建該詞條,闡述對功率因數控制(pfc)的理解,并與今后在此搜索功率因數控制(pfc)的朋友們分享。 創(chuàng)建詞條