基于高速IGBT的100kHz高壓-低壓DC/DC轉(zhuǎn)換器
3.2 開通損耗分析
本文引用地址:http://2s4d.com/article/279228.htm如圖7所示,盡管大多數(shù)負載點可以實現(xiàn)軟關(guān)斷,但是在輕載時由于原邊電流較小,儲存在變壓器漏感的能量較小,不足以使滯后臂實現(xiàn)軟關(guān)斷。從整體效果來看,主工作區(qū)間良好實現(xiàn)了軟關(guān)斷,IGBT的極低的輸出電容特性使得整個系統(tǒng)在沒有外置諧振電感的情況下實現(xiàn)了主工作區(qū)間的軟關(guān)斷,系統(tǒng)損耗由此明顯降低,這也是由前文提到的IGBT芯片面積遠小于MOSFET所決定。
3.3 效率測試與分析
經(jīng)過前文對開通和關(guān)斷狀態(tài)的分析,進一步測試了整個系統(tǒng)的效率,效率的測試方法采用測量輸入電壓、輸入電流、輸出電壓、輸出電流并計算輸入功率和輸出功率的方法得到。輸入電壓采用電壓表測量,輸入電流采用高精度分流計測量,輸出電壓電流功率數(shù)據(jù)從電子負載中得到。最終測試結(jié)果顯示,在很寬的電壓輸入范圍里,系統(tǒng)都能超過90% 的效率。圖8展示了輸入電壓220V到400V,輸出電流20A到110A的系統(tǒng)效率曲線,其中系統(tǒng)效率較高的區(qū)域是電壓輸入較低的區(qū)域。最核心的負載段,即30%到70%的負載段是系統(tǒng)工作最典型的使用工況,也是本設(shè)計最重要的設(shè)計目標(biāo)段,該段效率也達到了90%以上。
4 結(jié)論
當(dāng)代高速IGBT(如英飛凌HS3系列),對比傳統(tǒng)的溝槽柵場終止IGBT,在不增加集電極到發(fā)射極飽和壓降的情況下,拖尾電流和關(guān)斷損耗得到顯著改善,顯著地改善了溝槽柵。通過電路設(shè)計和實際測試,在這種軟開關(guān)式移相全橋DC/DC轉(zhuǎn)換器的應(yīng)用中實現(xiàn)了替代超級結(jié)MOSFET的可能性,同時在功率較高的工況超越了超級結(jié)MOSFET的性能,同時芯片面積比MOSFET大幅縮小,因此芯片成本也會降低。
本設(shè)計采用13:1的匝比,配合移相全橋和全波同步整流的拓撲結(jié)構(gòu),以及無諧振電感特性,實現(xiàn)了220V到400V功率范圍,93%的最優(yōu)效率,以及非常平緩的效率下降平臺,為高壓-低壓DC/DC變換器的設(shè)計提供了一種新的功率器件設(shè)計選擇方向。
參考文獻:
[1]S.M.N.Hasan, M.N.Anwar, M.Teimorzadeh, D.P.Tasky, “Features and challenges for Auxiliary Power Module (APM) design for hybrid/electric vehicle applications”, IEEE Vehicle Power and Propulsion Conference (VPPC) 2011, 6-9 Sept. 2011
[2]L. Mweene, C. Wright, and M. Schlecht, “A 1 kW 500kHz front-end converter for a distributed power supply system," Power Electronics, IEEE Transactions on, vol. 6, no. 3, pp. 398-407, 1991
[3]R.Redl, L.Balogh, D.W.Edwards, “Optimum ZVS Full-Bridge DC/DC Converter with PWM Phase-Shift Control: Analysis, Design Considerations, and Experimental Results”, Applied Power Electronics Conference and Exposition 1994, Ninth Annual Conference Proceedings 1994. pp.159-165, 13-17 February 1994.
[4]F. Krismer and J. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications," Industrial Electronics, IEEE Transactions on, vol. 59, no. 7, pp. 2745-2760, 2012.
[5]G. Deboy, N. Marz, J.-P. Stengl, H. Strack, J. Tihanyi, and H. Weber, “A new generation of high voltage MOSFETs breaks the limit line of silicon,” in Electron Devices Meeting, 1998. IEDM '98. Technical Digest., International, pp. 683-685, 1998.
[6]I. Widjaja, A. Kurnia, K. Shenai, and D. Divan, “Switching dynamics of IGBTs in soft-switching converters,” Electron Devices, IEEE Transactions on, vol. 42, no. 3, pp. 445–454, 1995.
[7]R. Wu, J. Wen, J. Wu, Z. Chen, C. Peng, and Y. Wang, “Analysis of power losses in voltage source converter with new generation IGBTs," in Computer Science and Automation Engineering (CSAE), 2012 IEEE International Conference on, vol. 1, pp. 674-678, 2012.
[8]T. Laska, M. Munzer, F. Pfirsch, C. Schaeffer, and T. Schmidt, “The field stop IGBT (FS IGBT). a new power device concept with a great improvement potential," in Power Semiconductor Devices and ICs, 2000. Proceedings.The 12th International Symposium on, pp. 355-358, 2000.
[9] H. Huesken, D. Chiola, and T. Kimmer, “A new IGBT family optimized for high switching speed," in Proceedings of PCIM Europe Conference, 2010.
[10]D. Chiola, H. Hsken, and T. Kimmer, “High speed IGBT with MOSFET-like switching behavior," in Proceedings of PCIM Europe Conference, 2010.
[11]T. Kimmer and E. Griebl, “Trenchstop5: A new application specific IGBT series," in Proceedings of PCIM Europe Conference, 2012.
[12]Erickson, R.; Maksimovic, D., Fundamentals of Power Electronics. University of Colorado Boulder, 2 ed., 2001. ISBN: 0-7923-7270-0.
評論