MEMS時鐘振蕩器在射頻系統(tǒng)中的應用
時鐘振蕩器作為頻率合成鎖相環(huán)的參考信號源,廣泛應用于各種射頻系統(tǒng)的本地振蕩器、時鐘發(fā)生電路和通信同步電路(見圖1)。
本地振蕩器通過鎖相環(huán)路倍頻,產(chǎn)生射頻混頻電路所需要的本振驅(qū)動信號。參考時鐘振蕩器的頻率準確度和穩(wěn)定度決定了本振信號和射頻收發(fā)器工作頻率的準確度和穩(wěn) 定度。對頻率精度要求不高的射頻系統(tǒng)使用射頻芯片內(nèi)置振蕩器電路與外接石英晶體諧振器組成參考時鐘振蕩器,這可以達到10-4~10-5的頻率精度。對頻 率誤差和環(huán)境穩(wěn)定性要求更高的射頻通信系統(tǒng)需要獨立的溫補振蕩器(TCXO)或頻率可以微調(diào)的牽引溫補振蕩器(VC-TCXO)來達到10-6~10-7 精度等級。恒溫振蕩器(OCXO)隔離了外部溫度對振蕩器的影響,使頻率精度達到了10-8~10-9,能滿足無線基站和高容量光纖傳輸網(wǎng)絡節(jié)點的時間和頻率基準要求。
圖1:時鐘振蕩器在射頻系統(tǒng)中的應用
射頻系統(tǒng)的時鐘發(fā)生電路可提供數(shù)模和模數(shù)轉(zhuǎn)換電路的取樣時鐘、基帶數(shù)字信號處理器時鐘、串行數(shù)據(jù)和時鐘恢復電路的本地時鐘。作為時鐘發(fā)生電路的參考源,時鐘振蕩器的相位噪聲和抖動性能,對模數(shù)信號轉(zhuǎn)換的信噪比和數(shù)據(jù)傳輸誤碼率和恢復時鐘的抖動都有重要影響。
射頻系統(tǒng)的通信同步和抖動清除電路也是時鐘振蕩器的重要應用。經(jīng)過無線或有線信號傳輸和時鐘恢復過程,受信道噪聲的影響,系統(tǒng)時鐘的相位噪聲和抖動會增加。 抖動清除電路應用窄帶鎖相環(huán)路和具有低相位噪聲特性的牽引振蕩器(VCXO)對系統(tǒng)時鐘相位噪聲進行過濾,可獲得低抖動的時鐘輸出。
全硅MEMS時鐘振蕩器的頻率穩(wěn)定性和相位噪聲性能在最近幾年取得了突破性的進展。MEMS振蕩器也展現(xiàn)了優(yōu)異的環(huán)境穩(wěn)定性(全溫度、沖擊、振動、電磁干 擾、電源噪聲)和器件可靠性。 在架構(gòu)上,全硅MEMS時鐘振蕩器結(jié)合了固定頻率的MEMS諧振器和提供溫度補償和頻率合成功能的、具有高分辨率的、分數(shù)N鎖相環(huán)電路?;谶@一架構(gòu)已經(jīng) 開發(fā)出各種不同類別的時鐘振蕩器—從單端和差分信號輸出的標準振蕩器、TCXO、VC-TCXO、VCXO到數(shù)字控制振蕩器(DCXO)。
本文介紹基于MEMS的DCXO和傳統(tǒng)牽引振蕩器在抖動清除和通信同步鎖相環(huán)路應用中的比較。并以實例說明如何應用高性能DCXO和FPGA來設計一個簡潔的、全數(shù)字化的抖動清除鎖相環(huán)電路。
頻率控制方法
振蕩器可通過直接牽引頻率或使用高分辨率鎖相環(huán)調(diào)整頻率來實現(xiàn)頻率控制。直接牽引頻率的 VCXO用調(diào)整變?nèi)荻O管電壓來改變諧振電路電容,而直接牽引頻率的DCXO通過可編程開關(guān)切換不同的諧振電容。使用石英晶體諧振器的VCXO直接牽引頻 率調(diào)整可以保持低相位噪聲,但牽引范圍被限制在約±200ppm。當系統(tǒng)應用需要更寬的頻率牽引范圍和與晶體振蕩器相近的低噪聲特性時,用戶更傾向于選擇 基于鎖相環(huán)的MEMS控制振蕩器架構(gòu),因為它們可以提供高達±1600ppm的牽引范圍。
基于鎖相環(huán)的MEMS VCXO內(nèi)部電路包括一個模數(shù)轉(zhuǎn)換器,將輸入電壓轉(zhuǎn)換成數(shù)字信號,并驅(qū)動一個分數(shù)N鎖相環(huán)來調(diào)節(jié)輸出頻率。該架構(gòu)在牽引范圍和VCO增益(Kv)的線性度 都優(yōu)于直接牽引方式?;谧?nèi)荻O管的VCXO的VCO增益線性度僅為10%,而鎖相環(huán)頻率牽引的線性度可以達到0.1% 至1.0%。良好的線性度使得鎖相環(huán)路設計簡化并在整個工作范圍內(nèi)更加穩(wěn)定。
模數(shù)轉(zhuǎn)換器相關(guān)文章:模數(shù)轉(zhuǎn)換器工作原理
鎖相環(huán)相關(guān)文章:鎖相環(huán)原理 網(wǎng)線測試儀相關(guān)文章:網(wǎng)線測試儀原理 全息投影相關(guān)文章:全息投影原理
評論