高線性度LNA模塊減少GPS中的干擾
全球定位系統(tǒng)(GPS)是由運(yùn)行在6個(gè)地球軌道上的24顆衛(wèi)星組成的導(dǎo)航系統(tǒng),無論身在何處GPS都可以幫助用戶精確地確定所處的位置。
本文引用地址:http://2s4d.com/article/260420.htm手機(jī)是集成GPS功能的理想產(chǎn)品。將GPS接收器集成到手機(jī)可以實(shí)現(xiàn)同步GPS(S-GPS)應(yīng)用,此時(shí)的GPS接收器是與不同頻段的無線通信系統(tǒng) (如PCS和蜂窩網(wǎng)絡(luò))一起使用的。消費(fèi)者希望具有GPS功能的手機(jī)能夠可靠地接收和放大衛(wèi)星發(fā)射的信號(hào),因?yàn)榻邮粘鲥e(cuò)將會(huì)導(dǎo)致位置信息的錯(cuò)誤。遺憾的是,RF干擾信號(hào)通常會(huì)損害GPS信號(hào)的質(zhì)量。
系統(tǒng)內(nèi)部干擾
GPS接收器與其它無線移動(dòng)通信發(fā)射器集成在同一線路板上使它很容易受系統(tǒng)內(nèi)部信號(hào)干擾,從而降低了其靈敏度和線性度。當(dāng)發(fā)射器處于發(fā)射模式時(shí),部分發(fā)射信號(hào)會(huì)泄漏到GPS接收路徑上。接收器因此將面臨很高的總輸入功率,并可能導(dǎo)致接收器的后端電路飽和。這會(huì)導(dǎo)致接收器后端產(chǎn)生非線性信號(hào),并使接收過程的信號(hào)產(chǎn)生錯(cuò)誤。為了避免這種現(xiàn)象,需要阻止帶外發(fā)射信號(hào)進(jìn)入GPS接收路徑。因此要求GPS接收路徑具有很好的帶外發(fā)射信號(hào)抑制能力。通過對(duì)干擾信號(hào)的抑制,可以防止GPS芯片組由于強(qiáng)大的干擾功率而出現(xiàn)過載,并能為接收信號(hào)提供線性放大。
確保接收器的靈敏度和線性
設(shè)計(jì)師一般會(huì)在GPS低噪聲放大器(LNA) 兩端各放一個(gè)濾波器。在LNA前面的濾波器有助于抑制帶外信號(hào),同時(shí)防止LNA進(jìn)入飽和狀態(tài)。這個(gè)濾波器必須具有很低的插入損耗。應(yīng)該避免在LNA之前放一個(gè)高插損的濾波器,因?yàn)檫@樣會(huì)增加系統(tǒng)的噪聲系數(shù)。根據(jù)Friis公式,系統(tǒng)總噪聲系數(shù)主要取決于第一級(jí)的噪聲系數(shù)或損耗。LNA后面的濾波器則可以用來進(jìn)一步改善帶外抑制性能,以防止后級(jí)電路過載。
然而,圖2所示的噪聲計(jì)算中,即使LNA具備特別良好的噪聲系數(shù)(0.8dB),但在其前面放置一個(gè)插入損耗低至0.5dB的前置濾波器則可降低級(jí)聯(lián)噪聲系數(shù)。只有當(dāng)增益足夠高時(shí),級(jí)聯(lián)噪聲系數(shù)才取決于第一級(jí)電路。第一級(jí)濾波器的負(fù)增益能夠使級(jí)聯(lián)噪聲系數(shù)降至1.35dB。因此,該解決方案有三個(gè)部件,包括兩個(gè)濾波器和一個(gè)LNA。
簡化的S-GPS設(shè)計(jì)
上述方案可簡化為只帶一個(gè)濾波器的解決方案,即把具有良好線性度的LNA作為第一級(jí),把具有良好帶外抑制性能的濾波器作為第二級(jí)。本部分將詳細(xì)介紹適用作GPS接收器前端的“LNA-濾波器”模塊。其集成了低噪聲、高線性度的增強(qiáng)型假晶高電子遷移率晶體管(E-pHEMT)LNA和低插損的高帶外抑制的薄膜腔聲諧振器(FBAR)濾波器。這種組合可以形成兼具極好噪聲系數(shù)和良好線性度的前端。
E-pHEMT技術(shù)可以用來設(shè)計(jì)出高度線性的LNA;FBAR技術(shù)則用來設(shè)計(jì)高Q值的小型濾波器,使其具備非常陡峭的滾降或優(yōu)秀的帶外抑制性能。集成了FBAR濾波器的LNA模塊能夠?qū)Ψ涓C和PCS頻段信號(hào)提供足夠的抑制,并有助于提升并行或并發(fā)GPS(S-GPS)工作的接收器性能。
高線性度的“LNA-濾波器”模塊可以處理高輸入功率而不會(huì)壓縮接收信號(hào)。因此,只要GPS路徑與PCS/蜂窩路徑之間有足夠的隔離度,LNA模塊前面的濾波器就可以省略。沒有前端濾波器,系統(tǒng)的噪聲系數(shù)就取決于LNA,可低至0.8dB。這種實(shí)現(xiàn)方法極大地改善了接收器的靈敏度。
由于濾波器的帶寬較窄,將LNA和濾波器集成還能使模塊的輸入阻抗看起來更集中(在Smith圖上的阻抗擴(kuò)散較小)。與沒有后置濾波器的分離式LNA相比,該方案使得天線和輸入LNA模塊之間的阻抗匹配更加容易。單芯片解決方案還能確保更可靠和更一致的接收器性能。
分析和討論
圖3給出了由于帶外干擾而對(duì)GPS信號(hào)進(jìn)行增益壓縮測量所使用的測試設(shè)置。根據(jù)圖3表格所示的值設(shè)置PCS/蜂窩頻段信號(hào)的功率電平,以表示GPS路徑和PCS/蜂窩路徑之間的隔離范圍。1.575GHz GPS信號(hào)的輸入功率電平固定為-35dBm,而PCS/蜂窩功放的輸出功率為+24dBm。供應(yīng)不同的輸入功率電平給LNA模塊(或GPS天線)輸入端可改變隔離電平。模塊輸入端干擾源產(chǎn)生的輸入功率部分可以用以下公式計(jì)算:
GPS天線輸入功率=干擾信號(hào)功率電平-隔離度
例如,當(dāng)GPS路徑和PCS/蜂窩路徑之間的隔離度為15dB時(shí),GPS天線處干擾源的輸入功率電平經(jīng)計(jì)算為+9dBm。GPS和(PCS/蜂窩)干擾信號(hào)通過功率組合器結(jié)合在一起。
在不同隔離電平時(shí)測得的GPS信號(hào)增益壓縮值如圖4所示。從測量結(jié)果看,為了避免GPS信號(hào)受到干擾信號(hào)功率的壓縮,GPS路徑和PCS/蜂窩路徑需要有40dB的隔離度。這意味著只要在GPS和PCS/蜂窩路徑之間存在40dB的隔離度,濾波器-LNA-濾波器解決方案就可以用這種LNA模塊替代。
參考圖1和圖3,當(dāng)PCS功放輸出+24dBm的功率,GPS和PCS路徑之間的隔離度為40dB時(shí),從干擾信號(hào)泄漏到GPS接收器芯片組的功率電平的計(jì)算公式為:
圖1:接收前端的簡化框圖。
圖2:“濾波器-LNA-濾波器”模型GPS接收器的噪聲計(jì)算。
圖3:帶外抑制性能的測量設(shè)置。
GPS芯片組干擾功率電平=PCS前端放大輸出功率-GPS和PCS路徑之間的隔離度-LNA模塊帶內(nèi)抑制=+24dBm-40dB-(54dBc-13dB)=-57dBm
結(jié)論和實(shí)現(xiàn)
LNA模塊有效地阻止了PCS信號(hào)泄漏進(jìn)GPS芯片組。當(dāng)GPS路徑和PCS路徑之間的隔離度為40dB時(shí),干擾功率可以低至-57dBm。通過合理的安排和設(shè)計(jì),LNA模塊解決方案可以替代“濾波器-LNA-濾波器”解決方案,后者噪聲系數(shù)更高和架構(gòu)更復(fù)雜,而這種單芯片組解決方案則可提供優(yōu)良的系統(tǒng)噪聲系數(shù)和高線性度,同時(shí)還能提供極佳的帶外抑制。另外,該LNA模塊能在保持GPS接收器良好性能的同時(shí),向設(shè)計(jì)師提供簡單、緊湊和低制造成本的解決方案。由于網(wǎng)絡(luò)匹配設(shè)計(jì)簡單,因此設(shè)計(jì)周期也較短。
為了達(dá)到40dB的隔離度,可以使用雙天線解決方案。通過雙天線解決方案,GPS信號(hào)可以具有一個(gè)獨(dú)立于PCS/蜂窩信號(hào)的路徑或鏈,從而達(dá)到40dB的隔離度。圖5給出的是雙天線設(shè)計(jì)的方框圖。
圖4:不同干擾頻帶天線隔離度下的GPS增益壓縮。
圖5:最新的射頻IC增加了足夠多的邏輯,因此可認(rèn)為是SoC。
評(píng)論