新聞中心

EEPW首頁(yè) > 設(shè)計(jì)應(yīng)用 > 雙頻帶帶通濾波器設(shè)計(jì)方法

雙頻帶帶通濾波器設(shè)計(jì)方法

作者: 時(shí)間:2013-05-29 來(lái)源:網(wǎng)絡(luò) 收藏

現(xiàn)代通信系統(tǒng)經(jīng)常用雙頻帶來(lái)隔離同一網(wǎng)絡(luò)中的不同工作頻帶。這種濾波器的傳統(tǒng)設(shè)計(jì)尺寸都比較大,而且需要對(duì)兩個(gè)濾波器應(yīng)用額外的組合網(wǎng)絡(luò)。但本文將要詳細(xì)討論的雙頻帶設(shè)計(jì)方法可以做得非常小。它的結(jié)構(gòu)相對(duì)比較簡(jiǎn)單,由兩個(gè)不對(duì)稱(chēng)分離式螺旋諧振器()與一條微帶線級(jí) 聯(lián)而成。由于固有的螺旋幾何特性,可以完全嵌入在微帶線中,因此最終設(shè)計(jì)的尺寸可以得到最大限度的縮小。本文還對(duì)這種創(chuàng)新設(shè)計(jì)作了進(jìn)一步 分析,并通過(guò)一對(duì)原型來(lái)驗(yàn)證這種設(shè)計(jì)方法。兩個(gè)雙頻帶濾波器分別工作在1.16GHz~1.84GHz之間以及1.80GHz~2.45GHz之間。

本文引用地址:http://2s4d.com/article/259834.htm

業(yè)界對(duì)雙頻帶的微型化設(shè)計(jì)付出了諸多努力。例如,交叉耦合型濾波器就是一種相對(duì)高效的解決方案。在這種設(shè)計(jì)方法中,一個(gè)帶雙諧振頻率響應(yīng)特性的等 長(zhǎng)開(kāi)口環(huán)諧振器被用作該濾波器的設(shè)計(jì)基礎(chǔ)。在一個(gè)實(shí)例中,交叉耦合型雙頻帶帶通濾波器是使用4個(gè)諧振器合成的,為了獲得合適的耦合系數(shù),必須仔細(xì)調(diào)校這些 諧振器的相對(duì)位置。遺憾的是,使用4個(gè)諧振器會(huì)導(dǎo)致插損性能降低,并且很難實(shí)現(xiàn)緊湊的尺寸(特別是橫截面尺寸)。

另外一種方法是將一個(gè)和一根并聯(lián)開(kāi)路短截線用作緊湊型雙頻帶帶通濾波器的設(shè)計(jì)基礎(chǔ)。這里設(shè)計(jì)和制造的是三個(gè)優(yōu)化了帶外抑制性能的雙頻帶濾波器。在這些原型中,第二個(gè)通帶可以通過(guò)調(diào)整特定并聯(lián)開(kāi)路短截線的位置和長(zhǎng)度進(jìn)行控制。另外還有一種基于彎曲階梯阻抗諧振器(SIR)的微型平面雙頻帶帶通濾波器。這種濾 波器的雙頻帶響應(yīng)取決于SIR的主要幾何參數(shù),而緊湊尺寸是通過(guò)整合U型SIR和最新耦合機(jī)制實(shí)現(xiàn)的。有種微型雙頻帶帶通濾波器也是使用短的和開(kāi)路的四分 之一波長(zhǎng)SIR的組合式耦合結(jié)構(gòu)實(shí)現(xiàn)的??傊?,這些不同的雙頻帶濾波器設(shè)計(jì)方法都依賴(lài)于一個(gè)具有雙諧振模式的基本單元。

本文提供了創(chuàng)建緊湊、雙頻帶帶通濾波器的不同設(shè)計(jì)方法。在這種新方法中,濾波器由兩個(gè)通過(guò)微帶線連接起來(lái)的級(jí)聯(lián)式ASSR組成。這些ASSR是單平面雙螺旋諧 振單元和對(duì)稱(chēng)分離型螺旋諧振器的改進(jìn)版本。由于其特殊的幾何特性,這種ASSR可以完全嵌入微帶饋線,進(jìn)而直接形成具有緊湊橫截面尺寸的相應(yīng)元件。一般來(lái)說(shuō),ASSR是一種通過(guò)電磁(EM)耦合方式工作的帶通單元。在當(dāng)前設(shè)計(jì)中,第一個(gè)通帶取決于ASSR的固有通帶,而第二個(gè)通帶是由ASSR組成的等阻抗 網(wǎng)絡(luò)和相連微帶線組合創(chuàng)建的。這樣,第二個(gè)通帶就可以獨(dú)立于第一個(gè)通帶進(jìn)行調(diào)整,方法是將相連的微帶線長(zhǎng)度作為可變參數(shù)。這個(gè)結(jié)論也將通過(guò)電路模型分析得 到驗(yàn)證。

在這種分析的基礎(chǔ)上,我們?cè)O(shè)計(jì)和制造了兩個(gè)不同的雙頻帶帶通濾波器來(lái)展示分析的有效性。根據(jù)我們所掌握的知識(shí),由于具有特別緊湊的橫截面尺寸,這些雙頻帶帶通濾波器是至今為止所有文獻(xiàn)中報(bào)告的最窄的濾波器。

圖1顯示了這種雙頻帶帶通濾波器中使用的ASSR版圖(a)以及推薦濾波器(b)。每個(gè)ASSR由兩個(gè)分開(kāi)的、互相不對(duì)稱(chēng)的矩形螺旋圖形組成。由于矩形螺旋的 旋轉(zhuǎn)幾何特性,給定單元可以完全嵌入微帶線內(nèi),從而實(shí)現(xiàn)特別緊湊的橫截面尺寸。這樣,ASSR寬帶W1保持為4.6mm不變,相當(dāng)于在Rogers公司的 RT/duroid 5880印刷電路板(PCB)基板上制造的50Ω微帶線的寬度,這種基板的相對(duì)介電常數(shù)是2.2,厚度為1.5mm。這些材料數(shù)值還被用于仿真。由于電路制造公差(在W1=4.6mm時(shí)約為0.1mm)帶來(lái)的限制,用于尺寸W3和W4的值是受限的。對(duì)這些雙頻帶帶通濾波器設(shè)計(jì)來(lái)說(shuō),這里使用的是W3=0.6mm和W4=0.3mm時(shí)的值。在一個(gè)耦合型微帶線濾波器的常用模型中,這些值將通過(guò)電磁耦合支持有效帶通屬性。該預(yù)測(cè)將通過(guò)L1(帶通濾波器的主要調(diào)整參數(shù))的參量分析方法得到驗(yàn)證,結(jié)果如圖2所示。


圖1:版圖顯示了ASSR(a)和推薦的雙頻帶帶通濾波器(b),這種濾波器采用了一對(duì)ASSR以及與之相連的微帶傳輸線。


圖2:仿真結(jié)果展示了作為L(zhǎng)1函數(shù)的S21隨L1而發(fā)生的變化。在本例中,W3=0.6mm,W4=0.3mm,W2=0.1mm。

如圖2所示,ASSR所形成的通帶頻率會(huì)隨著L1的增加而向下移動(dòng)。同時(shí),隨著L1的增加,通帶的頻率選擇性會(huì)有所增強(qiáng)。因此,通過(guò)調(diào)整L1可以實(shí)現(xiàn)所需的通帶。設(shè)計(jì)雙頻帶帶通濾波器所需的ASSR和相關(guān)微波組件是一個(gè)很好的開(kāi)始。

本文推薦的雙頻帶帶通濾波器可以通過(guò)級(jí)聯(lián)兩個(gè)ASSR和長(zhǎng)度用W5表示的微帶線來(lái)合成(圖1)。為清楚地表明這些ASSR的特定工作原理,圖3提供了相應(yīng)的 等效電路模型。相連的微帶線用電感L2表示,ASSR用電容C1和電感L1及互感Lm表示。從模型可以看出,一個(gè)通帶主要由ASSR決定,另一個(gè)通帶取決 于電感L2和ASSR等效阻抗網(wǎng)絡(luò)的組合作用。

從這個(gè)電路模型可以很明顯看出,雙通帶中有一個(gè)通帶主要取決于ASSR的固有 通帶,另一個(gè)通帶則由相連的微帶線和ASSR等效阻抗網(wǎng)絡(luò)的組合產(chǎn)生。顯然,通帶2可以通過(guò)L2獨(dú)立進(jìn)行調(diào)整。另外,ASSR的幾何參數(shù)可以同時(shí)影響兩個(gè) 通帶。為示范這種模型的有效性,我們使用曲線擬合方法實(shí)現(xiàn)了以三個(gè)不同原型為目標(biāo)的抽取過(guò)程。圖3對(duì)全波仿真結(jié)果和電路仿真結(jié)果進(jìn)行了比較。


圖3:基于ASSR的雙頻帶帶通濾波器的等效電路模型。

在感興趣的特定頻率范圍內(nèi),全波電磁仿真結(jié)果與電路級(jí)仿真結(jié)果在全部三種情況下都非常接近。兩種仿真器都非常清晰地展示了基于ASSR設(shè)計(jì)的雙頻帶 現(xiàn)象,有助于驗(yàn)證電路模型和推薦的雙頻帶帶通濾波器設(shè)計(jì)方法。增加L1值會(huì)使兩個(gè)通帶的頻率向下移動(dòng),并在很大程度上影響到所有元件(案例1和2)。另一 方面,增加W5只會(huì)降低第二個(gè)通帶的中心頻率,并且對(duì)L2有很大影響。顯然,給出的比較結(jié)果再次驗(yàn)證了從電路模型得出的指導(dǎo)方針??傊?,只需L1和W5兩 個(gè)幾何參數(shù)(圖1),就足以高效地控制這種濾波器設(shè)計(jì)的雙頻帶操作過(guò)程。

根據(jù)上述分析可以知道,緊湊型雙頻帶帶通濾波器可以 使用ASSR結(jié)合微帶傳輸線進(jìn)行設(shè)計(jì)。優(yōu)化過(guò)程只需調(diào)整兩個(gè)主要的幾何參數(shù):L1和W5,因此在這些濾波器的調(diào)整和優(yōu)化方面具有很大的靈活性。為了用實(shí)際 硬件演示軟件分析的有效性,對(duì)表1中的案例1描述的原型進(jìn)行了制造和測(cè)量。方便起見(jiàn)把它叫做原型A。另外,稱(chēng)為原型B的第二個(gè)雙頻帶帶通濾波器也進(jìn)行了制 造和表征,以進(jìn)一步驗(yàn)證這種設(shè)計(jì)方法。第二個(gè)濾波器設(shè)計(jì)工作通帶處于從1710MHz至1880MHz的DCS1800頻段以及從2400MHz至2483MHz的工業(yè)-科學(xué)-醫(yī)療(ISM)頻段內(nèi)。


圖4:圖中比較了三種原型雙頻帶帶通濾波器案例下的全波和電路仿真結(jié)果,其中“fw”代表全波仿真,“cm”指電路模型仿真。

兩種濾波器的調(diào)諧過(guò)程都非常高效,并且兩種原型都達(dá)到了目標(biāo)通帶與性能水平。圖5顯示了兩種原型濾波器的照片,其中以毫米刻度的直尺作為濾波器大小的參考。兩種原型濾波器分別用安立(Anritsu)公司的ME7808A微波矢量網(wǎng)絡(luò)分析儀進(jìn)行了表征,這款分析儀的模塊工作頻率可達(dá)110GHz。對(duì)原型濾波器的仿真和測(cè)量結(jié)果分別見(jiàn)圖6和圖7。


圖5:該照片顯示了所制造的原型濾波器A和B。

如圖6和圖7所示,在感興趣的特定頻段內(nèi),仿真和測(cè)量結(jié)果具有很好的一致性。結(jié)果中微小的差別源自制造誤差和/或電路元件達(dá)到要求值時(shí)的容差。與較 低通帶相比,較高通帶的帶寬相對(duì)較窄,并且具有小得多的分?jǐn)?shù)帶寬。對(duì)原型A來(lái)說(shuō),頻帶比約為1.58,雙通帶的3dB分?jǐn)?shù)頻率帶寬約為3%和0.5%。雙 通帶間的頻帶抑制值約為36dB。對(duì)原型B來(lái)說(shuō),測(cè)量結(jié)果表明雙通帶的中心頻率約為1.81GHz和2.44GHz,頻帶比約為1.34。對(duì)應(yīng)的3dB分?jǐn)?shù)頻率帶寬為12.7%和0.8%。原型B的雙通帶間頻帶抑制值約為17dB,這是兩個(gè)通帶之間的一個(gè)可接受的隔離值。這些結(jié)果顯示了這種創(chuàng)新設(shè)計(jì)方法以緊湊尺寸創(chuàng)建雙頻帶帶通濾波器的高效性,而且只需調(diào)整兩個(gè)主要的幾何參數(shù)就能完成調(diào)整。


圖6:圖中顯示了濾波器原型A的仿真結(jié)果和測(cè)量結(jié)果。在本例中,L1=11.5mm,W5=0.3mm。

總之,ASSR和標(biāo)準(zhǔn)微帶電路的這種使用方法允許制造出相當(dāng)緊湊的、工作在微波頻率的雙頻帶帶通濾波器,并且具有良好的通帶響應(yīng)性能,通帶間也具有足夠的隔 離度。為這些濾波器開(kāi)發(fā)的等效電路模型非常精確,仿真結(jié)果與所制造的原型濾波器的測(cè)量結(jié)果也非常接近。計(jì)算機(jī)仿真性能和對(duì)所制造濾波器的測(cè)量性能之間的任 何偏差,都?xì)w因于工藝變化以及達(dá)到計(jì)算機(jī)仿真中采用的高精度電路單元值的難度。盡管如此,隨著許多相互靠得很近的頻段必須共存的無(wú)線通信領(lǐng)域中應(yīng)用數(shù)量的 不斷增加,這種創(chuàng)新設(shè)計(jì)方法在創(chuàng)建要求雙通帶的微型化分立與集成電路(IC)濾波器方面表現(xiàn)出了極好的前景。

濾波器更多技術(shù)資訊,歡迎訪問(wèn)與非網(wǎng)濾波器技術(shù)專(zhuān)區(qū)



評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉