控制開關(guān)頻率,優(yōu)化完整負(fù)載及線路電壓范圍內(nèi)的能效
當(dāng)PFC段插電時(shí),會(huì)出現(xiàn)大電流給大電容充電。此電路板包含NTC來限制浪涌電流。此NTC已經(jīng)被短路,用于測(cè)量能效。
圖8顯示了大功率范圍(從5%負(fù)載到100%負(fù)載)內(nèi)低線路及高線路電壓時(shí)的能效比。右側(cè)的CCFF能效曲線類似于傳統(tǒng)CrM PFC段。在左側(cè)的圖中,由于開關(guān)損耗的緣故,能效正常下降,直到一個(gè)拐點(diǎn),此時(shí)能效又上升,這是CCFF工作的結(jié)果。如前所述,當(dāng)線路電流低于預(yù)設(shè)值時(shí),CCFF使開關(guān)頻率作為瞬時(shí)線路電流的函數(shù)來線性下降。CCFF閾值設(shè)定為約低線路電壓時(shí)最大線路電流的20%,及高線路電壓時(shí)最大線路電流的近45%,這可以從圖8中所觀察到的拐點(diǎn)得到印證。
要提醒一下的是,CCFF以瞬時(shí)線路電流的函數(shù)形式工作:當(dāng)線路電流的信號(hào)表征(由FFcontrol引腳產(chǎn)生)低于2.5 V時(shí),電路降低開關(guān)頻率。這就是接近線路過零點(diǎn)時(shí)的案例,而無論這是負(fù)載多大。因此,開關(guān)頻率在線路正弦波最小值時(shí)下降,即使是在重負(fù)載條件下。這就是大負(fù)載時(shí)能效也提升了的原因,最少是在高線路電壓條件時(shí)就是如此,此時(shí)CCFF的影響更大,因?yàn)榫€路電流較小。
當(dāng)瞬時(shí)線路電流要變得極小時(shí)(在我們的應(yīng)用中為低于最大電流電平的約5%,見參考資料[1]),電路進(jìn)入跳周期模式。換句話說,在功率轉(zhuǎn)換成為低效的瞬間,電路停止工作。與不含跳周期功能的CCFF工作相比,跳周期模式進(jìn)一步提升了輕載能效(高線路電壓時(shí)約提升2%,滿載時(shí)約提升5%)。
從更普遍的意義上講,圖8顯示出CCFF在低線路電壓條件下低于20%負(fù)載時(shí)大幅提升能效,而在230 V高線路電壓條件下低于50%負(fù)載時(shí)開始顯現(xiàn)其優(yōu)勢(shì)。
應(yīng)該注意的是,總諧波失真(THD)受跳周期模式功能的影響。即使總諧波失真相對(duì)較低,但在要提供優(yōu)異THD性能時(shí),應(yīng)當(dāng)禁止使用跳周期模式。可以參見NCP1611/2評(píng)估板有關(guān)功率因數(shù)及THD的數(shù)據(jù)。
眾所周知,由于高工作開關(guān)頻率的緣故,CrM系統(tǒng)在高線路電壓、輕負(fù)載時(shí)通常無法持續(xù)工作。相反,它們進(jìn)入突發(fā)模式。這種情況通常在最高線路電壓等級(jí)工作、20%或以下負(fù)載范圍時(shí)出現(xiàn)。圖8顯示了降低開關(guān)頻率就克服了這個(gè)局限。因此,應(yīng)當(dāng)注意的是,CCFF進(jìn)一步提供了在低至極低功率等級(jí)時(shí)提供穩(wěn)定工作的可能性。
結(jié)論
計(jì)算開關(guān)損耗是一個(gè)棘手的過程。本文介紹了一種預(yù)測(cè)降低開關(guān)頻率時(shí)DCM損耗與CrM損耗相關(guān)性趨勢(shì)的方法。分析及實(shí)驗(yàn)數(shù)據(jù)顯示:當(dāng)導(dǎo)電損耗相對(duì)于開關(guān)損耗較小,既在線路電流較低時(shí),更適宜采用頻率反走。圖2甚至顯示電流越低,最優(yōu)頻率也越低,從而在“高能效的頻率”與線路電流之間產(chǎn)生的關(guān)聯(lián),這就是CCFF的工作原理……實(shí)驗(yàn)數(shù)據(jù)確認(rèn)了在低線路及高線路電壓條件下CCFF即使在擴(kuò)展功率范圍也維持高能效比。更通俗地說,如果啟用了跳周期模式,從5%負(fù)載到100%負(fù)載范圍下,能效都保持高于94%;而當(dāng)關(guān)閉跳周期模式時(shí),能效底值(在5%負(fù)載時(shí)獲得)降到了92%。
評(píng)論