多個AD9779 TxDAC器件的同步
AD9779 TxDAC的DAC輸出采樣速率最高可達1 GSPS.在某些應用中,例如需要波束導引的應用,用戶可以同步多個AD9779.因此,當AD9779以接近最高速度工作時,TxDAC時序特性變得至關重要。
本應用筆記不討論AD9779運作涉及到的全部細節(jié)。若要全面了解其內部數(shù)字引擎,用戶應參閱AD9779數(shù)據(jù)手冊。本應用筆記擴展了SYNC_I的使用,使多個AD9779器件實現(xiàn)相同的REFCLK/DATACLK同步。
在傳統(tǒng)的插值TxDAC中,當DAC采用DAC輸出采樣速率時鐘驅動時,會產(chǎn)生兩個問題。第一,可能難以確定輸入數(shù)據(jù)在哪一個DACCLK沿鎖存。多數(shù)DAC解決這一問題的方法是提供一個DATACLK信號輸出,以指示輸入寄存器鎖存沿的位置。第二個問題發(fā)生于用戶試圖同步多個TxDAC時,這是本應用筆記的主題。多個器件的DATACLK輸出并不保證同步,上電時僅靠器件本身不大可能實現(xiàn)同步。AD9779解決這一問題的方法是為數(shù)據(jù)同步提供第二個時鐘,該時鐘稱為SYNC_I,是AD9779的一路輸入,可以用來同步多個AD9779的輸入數(shù)據(jù)鎖存。
本應用筆記將詳細說明用于同步多個AD9779器件的數(shù)字數(shù)據(jù)輸入的方法。DAC輸出的相位對齊通過設計保證,精度小于一個DACCLK輸出周期。然而,由于輸出延遲不匹配(室溫下及冷熱溫度下),多個DAC輸出的相位對齊可能存在細微的不一致,本應用筆記不討論這一問題。
同步方案
同步多個AD9779 DAC有兩種方案。在第一種方案中,一個器件用作主器件,其余器件用作從器件。在第二種方案中,所有器件都是從器件。兩種方案具有相同的時序限制,不存在性能權衡。主/從模式和從模式的框圖分別如圖1和圖2所示。
圖1. 主/從SYNC_I/O分配
圖2. 從SYNC_I分配
同步詳解
工作中,差分時鐘信號驅動所有主器件和從器件的AD9779 REFCLK輸入。REFCLK輸入接收器是一個高增益差分放大器,各差分輸入需要接近400 mV的共模輸入電平和至少400 mV p-p的擺幅。
如果選定了主器件,可以使能主器件的差分LVDS輸出信號,該信號稱為SYNC_O+和SYNC_O?.通過寄存器0x07的位5,可以將SYNC_O設置為在DACCLK的上升沿或下降沿觸發(fā)。SYNC_O還有一個可編程的延遲,可以通過寄存器0x04的位0 (MSB)和寄存器0x05的位[7:4] (LSB)設置。SYNC_O通過將同步驅動器使能位(寄存器0x07的位6)置1而使能。SYNC_O信號速度可以是REFCLK速度的整數(shù)除數(shù),通過寄存器0x04的位[3:1]設置。主器件的REFCLK輸入和SYNC_O信號的可能時序情況如圖3所示。
圖3. DACCLK SYNC_O時序
SYNC_O驅動器和SYNC_I接收器規(guī)定用于LVDS電平(參見AD9779數(shù)據(jù)手冊)。
驅動多個AD9779器件的CMOS數(shù)字數(shù)據(jù)輸入的并行數(shù)字輸入總線在時間上應均衡。如果多條數(shù)據(jù)總線不均衡,可以利用AD9779的編程能力,通過DATA_CLOCK_DELAY(寄存器0x04的位[7:4])以大約180 ps的增量偏移各AD9779的鎖存時間。AD9779無法補償單條數(shù)據(jù)總線中包含的位偏斜。
在所有AD9779器件上,SYNC_I、REFCLK輸入與CMOS數(shù)字輸入數(shù)據(jù)之間都存在建立保持關系。AD9779數(shù)據(jù)手冊的"時序信息"部分說明了這些時序關系。
SYNC_O和SYNC_O_DELAY的推薦應用是利用SYNC_O_DELAY來均衡SYNC_I和REFCLK的時序,確保其時序關系有效。
SYNC_I具有其自己的可編程延遲,可以通過寄存器0x05的位0 (MSB)和寄存器0x06的位[7:4] (LSB)設置。SYNC_I_DELAY可以用于均衡不理想或者選用圖2所示電路的應用中。SYNC_I通過將同步接收器使能位(寄存器0x07的位7)置1而使能。
表1顯示了增量延遲SYNC_O_DELAY和SYNC_I_DELAY,這些延遲可以通過SPI寄存器設置。
表 1
圖4所示為用于同步多個AD9779的內部電路框圖。在可編程的延遲后,SYNC_I信號得到處理,使得對于SYNC_I的每個上升沿,只剩下一個長度為DACCLK周期的脈沖。注意在這種情況下,DACCLK代表AD9779 DAC的內部采樣速率時鐘,它可以與REFCLK相同,具體取決于對AD9779的編程。長度為DACCLK周期的該單一脈沖驅動圖4中的5位分頻器的負載信號。分頻器延遲邏輯的5信號輸出代表所有插值速率的可能DATACLK信號,包括使能零填充的可能性。通過設置DACCLK偏移寄存器,圖4中的位1至位4可以DACCLK周期為增量進行延遲。5位分頻器的內部時序、負載信號的影響和DACCLK偏移值如圖6所示。
圖4. AD9779多DAC同步電路框圖
邊沿檢測器還驅動誤差檢測電路,圖5更詳細地顯示了該電路??删幊陶`差檢測電路可以用來測量時序裕量,如果超出時序裕量,將產(chǎn)生中斷。
圖5. 可編程時序裕量和負載信號產(chǎn)生詳情
圖6. SYNC_I、DACCLK和DATACLK的內部時序
圖5更詳細地顯示了圖4中虛線所示的電路。在電路內部,F(xiàn)F5輸入端的信號相互之間必須滿足建立保持要求。FF5輸入端的無效時序可能導致REFCLK與數(shù)字輸入數(shù)據(jù)之間的同步丟失。此點的時序故障通常表現(xiàn)為DAC輸出噪底的提高。對于DACCLK和SYNC_I輸入,F(xiàn)F5輸入端的時序要求變?yōu)榻⒈3忠蟆?/P>
改變同步輸入延遲可以有效移動REFCLK/SYNC_I的有效時序窗口。在實際應用中,對于給定的同步輸入延遲,將產(chǎn)生一個具有給定寬度的有效REFCLK/SYNC_I時序窗口。如果時序裕量按1遞增,可以將時序裕量值設置為SYNC IRQ的設置值。將時序裕量設置為此值時,事實上是將SYNC IRQ設置為0裕量。SYNC IRQ不區(qū)別建立和保持違規(guī)引起的時序誤差。然而,根據(jù)設計,當可編程時序裕量超過建立和保持裕量二者中的較小者時,SYNC IRQ置1.用戶可以通過提高寄存器0x06位[3:0]的值來提高時序裕量。對于0裕量,如果存在任何偏向敏感(建立或保持)特性的漂移,則SYNC IRQ置1.
事實上,DACCLK會對邊沿檢測器的輸出進行采樣。邊沿檢測器的輸出是一個邏輯高電平寬度等于一個DACCLK周期的單脈沖。為使負載信號有效,邊沿檢測器的輸出在圍繞內部DACCLK信號上升沿的給定時序窗口內必須保持穩(wěn)定(高電平或低電平)。
假設可編程時序裕量設為0,并且FF5輸入端的時序有效,則FF3和FF4的Q輸出相同,SYNC IRQ處于復位狀態(tài)。在同樣的條件下,如果FF5輸入端的時序無效,則FF3和FF4的輸出不同,SYNC IRQ置1.如果FF5輸入端存在有效的時序條件,則必須將可編程時序裕量設置為大于0的值才能確定時序裕量。
設計一個在主/從同步配置下使用AD9779的系統(tǒng)時,推薦的程序是在SYNC IRQ置1前找出SYNC_O_DELAY的值(在該值時,可編程時序裕量可以設置為最大可能的值),這代表最佳的時序和最大的時序裕量。然后,用戶可以降低可編程時序裕量的值??删幊虝r序裕量的降幅代表SYNC IRQ對漂移的敏感度。
在AD9779可以接收的高DACCLK頻率時,DACCLK和SYNC_I的有效時序窗口可能占DACCLK周期
分頻器相關文章:分頻器原理
評論