詳解如何實現(xiàn)開關(guān)電源待機低功耗
1、引言
隨著能源效率和環(huán)保的日益重要,人們對開關(guān)電源待機效率期望越來越高,客戶要求電源制造商提供的電源產(chǎn)品能滿足BLUE ANGEL,ENERGY STAR, ENERGY 2000等綠色能源標(biāo)準(zhǔn),而歐盟對開關(guān)電源的要求是:到2005年,額定功率為0.3W~15W,15W~50W和50W~75W的開關(guān)電源,待機功耗需分別小于0.3W,0.5W和0.75W。而目前大多數(shù)開關(guān)電源由額定負(fù)載轉(zhuǎn)入輕載和待機狀態(tài)時,電源效率急劇下降,待機效率不能滿足要求。這就給電源設(shè)計工程師們提出了新的挑戰(zhàn)。
2、開關(guān)電源功耗分析
要減小開關(guān)電源待機損耗,提高待機效率,首先要分析開關(guān)電源損耗的構(gòu)成。以反激式電源為例,其工作損耗主要表現(xiàn)為:MOSFET導(dǎo)通損耗
MOSFET寄生電容損耗
開關(guān)交疊損耗,PWM控制器及其啟動電阻損耗,輸出整流管損耗,箝位保護(hù)電路損耗,反饋電路損耗等。其中前三個損耗與頻率成正比關(guān)系,即與單位時間內(nèi)器件開關(guān)次數(shù)成正比。
在待機狀態(tài),主電路電流較小,MOSFET導(dǎo)通時間ton很小,電路工作在DCM模式,故相關(guān)的導(dǎo)通損耗,次級整流管損耗等較小,此時損耗主要由寄生電容損耗和開關(guān)交疊損耗和啟動電阻損耗構(gòu)成。
3、提高待機效率的方法
根據(jù)損耗分析可知,切斷啟動電阻,降低開關(guān)頻率,減小開關(guān)次數(shù)可減小待機損耗,提高待機效率。具體的方法有:降低時鐘頻率;由高頻工作模式切換至低頻工作模式,如準(zhǔn)諧振模式(Quasi Resonant,QR)切換至脈寬調(diào)制(Pulse Width Modulation,PWM), 脈寬調(diào)制切換至脈沖頻率調(diào)制(Pulse Frequency Modulation, PFM);可控脈沖模式(Burst Mode)。
3.1 切斷啟動電阻
對于反激式電源,啟動后控制芯片由輔助繞組供電,啟動電阻上壓降為300V左右。設(shè)啟動電阻取值為47kΩ,消耗功率將近2W。要改善待機效率,必須在啟動后將該電阻通道切斷。TOPSWITCH,ICE2DS02G內(nèi)部設(shè)有專門的啟動電路,可在啟動后關(guān)閉該電阻。若控制器沒有專門啟動電路,也可在啟動電阻串接電容,其啟動后的損耗可逐漸下降至零。缺點是電源不能自重啟,只有斷開輸入電壓,使電容放電后才能再次啟動電路。而圖1所示的啟動電路,則可避免以上問題,而且該電路功耗僅為0.03W。不過電路增加了復(fù)雜度和成本。
圖1 UC3842反激式電源啟動電路
3.2 降低時鐘頻率
時鐘頻率可平滑下降或突降。平滑下降就是當(dāng)反饋量超過某一閾值,通過特定模塊,實現(xiàn)時鐘頻率的線性下降。POWER公司的TOPSwitch-GX和SG公司的SG6848芯片內(nèi)置了這樣的模塊,能根據(jù)負(fù)載大小調(diào)節(jié)頻率,圖2所示是SG6848時鐘頻率與其反饋電流的關(guān)系。
圖2 SG6848反饋電流與時鐘頻率的關(guān)系
突降實現(xiàn)方法如圖3:以UCC3895為例,當(dāng)電源處于正常負(fù)載狀態(tài)時,Q1導(dǎo)通,其時鐘周期為:
當(dāng)電源進(jìn)入待機狀態(tài)時,Q1關(guān)閉,時鐘周期增大為
即開關(guān)頻率減小。開關(guān)損耗降為降頻前的
?。ㄐ∮?)倍。L5991和Infineon公司的CoolSet F2系列已經(jīng)集成了該功能。
3.3切換工作模式
3.3.1 QR→PWM
對于工作在高頻工作模式的開關(guān)電源,在待機時切換至低頻工作模式可減小待機損耗。例如,對于準(zhǔn)諧振式開關(guān)電源(工作頻率為幾百kHz到幾MHz),可在待機時切換至低頻的脈寬調(diào)制控制模式PWM(幾十kHz)。
IRIS40xx芯片就是通過QR與PWM切換來提高待機效率的。圖4是IRIS4015構(gòu)成的反激式開關(guān)電源,重載時,輔助繞組電壓大,R1分壓大于0.6V,Q1導(dǎo)通,輔助準(zhǔn)諧振信號經(jīng)過D1,D2,R3,C2構(gòu)成的延時電路到達(dá)IRIS4015的FB腳,內(nèi)部比較器對該信號進(jìn)行比較,電路工作在準(zhǔn)諧振模式。當(dāng)電源處于輕載和待機時候,輔助繞組電壓較小,Q1關(guān)斷,諧振信號不能傳輸至FB端,F(xiàn)B電壓小于芯片內(nèi)部的一個門限電壓,不能觸發(fā)準(zhǔn)諧振模式,電路則工作在更低頻的脈寬調(diào)制控制模式。
圖4 由IRIS4015構(gòu)成的QR/PWM反激式電源電路
3.3.2 PWM→PFM
對于額定功率時工作在PWM模式的開關(guān)電源,,也可以通過切換至PFM模式提高待機效率,即固定開通時間,調(diào)節(jié)關(guān)斷時間,負(fù)載越低,關(guān)斷時間越長,工作頻率也越低。圖5是采用NS公司的LM2618控制的Buck轉(zhuǎn)換器電路和分別采用PWM和PFM控制方法的效率比較曲線。由圖可見,在輕載時采用PFM模式的電源效率明顯大于采用PWM模式時的效率,且負(fù)載越低,PFM效率優(yōu)勢越明顯。將待機信號加在其PW/引腳上,在額定負(fù)載條件下,該引腳為高電平,電路工作在PWM模式,當(dāng)負(fù)載低于某個閾值時,該引腳被拉為低電平,電路工作在PFM模式。實現(xiàn)PWM和PFM的切換,也就提高了輕載和待機狀態(tài)時的電源效率。
pwm相關(guān)文章:pwm是什么
評論