采用新的調(diào)制技術(shù)和濾波器結(jié)構(gòu)減小D類放大器的EMI
引言
近年來d類放大器的技術(shù)迅猛發(fā)展,最常見的莫過于應(yīng)用于每個(gè)通道低于50w的低功耗產(chǎn)品中。在這些低功耗應(yīng)用中,d類放大器相比傳統(tǒng)ab類放大器而言有效率上的先天優(yōu)勢(shì),因?yàn)閐類放大器的輸出級(jí)通常只處于導(dǎo)通或關(guān)斷,沒有中間偏壓級(jí)。然而,長(zhǎng)久以來,這一效率上的優(yōu)勢(shì)并未使其獲得設(shè)計(jì)人員的廣泛青睞,因?yàn)閐類放大器也有明顯的缺點(diǎn):器件成本高、較差的音頻性能(與ab類放大器相比),并且需要輸出濾波。
近年來,受以下兩個(gè)主要因素的影響,這樣的局面正逐漸扭轉(zhuǎn),使d類放大器在很多應(yīng)用領(lǐng)域引起了人們的廣泛關(guān)注。
首先,是市場(chǎng)需要。d類放大器的某些優(yōu)點(diǎn)推動(dòng)了手機(jī)和lcd平板顯示器這兩個(gè)終端設(shè)備市場(chǎng)的迅速發(fā)展。對(duì)于手機(jī)來說,揚(yáng)聲器和ptt (push-to-talk,一鍵通)模式需要d類放大器的高效率,以延長(zhǎng)電池壽命。lcd平板顯示器的發(fā)展對(duì)電子器件提出了“低溫運(yùn)行(cool running)”的需求,這是由于工作溫度的升高將影響顯示顏色對(duì)比度。而d類放大器的高效率意味著驅(qū)動(dòng)電子設(shè)備時(shí)功耗更低,使lcd平板顯示器工作時(shí)發(fā)熱更少,圖像顯示效果更好。
影響d類放大器應(yīng)用的第二個(gè)因素便是自身技術(shù)的發(fā)展。根據(jù)市場(chǎng)需要,一些制造商改進(jìn)了d類放大技術(shù),使d類放大器具有更理想價(jià)格的同時(shí),也具備了與ab類放大器相近的音頻性能。此外,一些新型的d類放大器輸出調(diào)制方案還可以降低實(shí)際應(yīng)用的emi。
某些新型d類放大設(shè)計(jì)方案雖然是基于老式的pwm型結(jié)構(gòu),但采用了更復(fù)雜的調(diào)制技術(shù),實(shí)現(xiàn)低功耗系統(tǒng)中的無濾波工作。效率指標(biāo)可以通過測(cè)試驗(yàn)證,但某些設(shè)計(jì)人員仍然懷疑基于這些新技術(shù)的產(chǎn)品將存在普遍的emc/rfi兼容性問題。實(shí)際上,良好的pcb布局和較短的揚(yáng)聲器連線可以保證大大降低emi幅射,使之滿足fcc或ce標(biāo)準(zhǔn)。
應(yīng)用難點(diǎn)
有些應(yīng)用中的物理布局需要長(zhǎng)的揚(yáng)聲器連線,這樣的揚(yáng)聲器連線便具有天線效應(yīng),必須嚴(yán)格控制rf幅射。實(shí)際上,揚(yáng)聲器連線越長(zhǎng),它作為天線產(chǎn)生幅射的頻率就越低。同時(shí),某些應(yīng)用要求emi幅射低于ce/fcc標(biāo)準(zhǔn),以符合汽車電子規(guī)范,或者避免干擾其他低頻電路。面對(duì)如此紛繁各異的需求,這些應(yīng)用往往成為一些難點(diǎn)無法克服。
最有代表性的應(yīng)用難點(diǎn)便是平板電視。由于揚(yáng)聲器通常排列在設(shè)備的外側(cè)邊緣,往往不可避免的要使用長(zhǎng)的揚(yáng)聲器連線。如果還存在模擬視頻信號(hào),則僅僅滿足fcc或ce的rf幅射要求還不夠(這些標(biāo)準(zhǔn)只針對(duì)30mhz以上的頻率);往往還需要抑制開關(guān)基頻以避免干擾視頻信號(hào)。如果采用早期pwm放大器所用的傳統(tǒng)lc濾波器,則需要對(duì)其進(jìn)行分析,以保證他們能有效抑制新型放大器所產(chǎn)生的高頻開關(guān)瞬態(tài)。
pwm型d類放大器
傳統(tǒng)d類放大器通?;诿}寬調(diào)制(pwm)原理設(shè)計(jì)。其輸出可以配置為單端或全差分橋接負(fù)載(btl)。圖1為pwm型d類放大器的典型btl輸出波形??焖俚那袚Q時(shí)間和接近軌至軌的擺幅使此類放大器具有非常高的效率。然而,這些特性使放大器具有寬的輸出頻譜,可能導(dǎo)致高頻rf幅射和干擾。因此,采用此類方案通常需要使用輸出濾波器來抑制有害的rf幅射。
圖1. 傳統(tǒng)脈寬調(diào)制(pwm)方案的波形
如圖1所示,如果器件的反相和同相輸出回路具有較高的匹配度,則兩個(gè)對(duì)稱輸出信號(hào)波形在揚(yáng)聲器或連線上將具有很小的共模(cm)信號(hào)(底部的跡線)。注意:50%占空比代表零輸入信號(hào)(空閑狀態(tài))。因此,可以設(shè)計(jì)一個(gè)差分低通濾波器,用于衰減信號(hào)波形中高頻分量(快速切換所產(chǎn)生的),同時(shí)保留有用的低頻分量以輸出到揚(yáng)聲器。
新一代調(diào)制技術(shù)
隨著市場(chǎng)對(duì)d類放大器需求的不斷增長(zhǎng),一些制造商最近推出了可獨(dú)立控制h橋的兩個(gè)半橋的新一代調(diào)制方案。這一調(diào)制方案具有兩個(gè)主要優(yōu)點(diǎn):
音頻信號(hào)較弱或空閑狀態(tài)時(shí),負(fù)載上幾乎沒有差分開關(guān)信號(hào)。較傳統(tǒng)pwm設(shè)計(jì)改進(jìn)了靜態(tài)電流損耗。
最小脈沖,共模(cm)開關(guān)信號(hào)有助于降低導(dǎo)通和關(guān)斷瞬態(tài)。btl輸出引腳的空閑狀態(tài)直流電平(濾波后)接近于gnd。因此,濾波元件的不匹配或雜散電容(可能導(dǎo)致放大器導(dǎo)通或關(guān)斷時(shí)出現(xiàn)音頻雜音)可減到最小。
顯然,這一新技術(shù)雖具有一些優(yōu)點(diǎn),但放大器輸出將不再對(duì)稱。圖2所示的信號(hào)波形(以max9704立體聲d類放大器為例)具有較高的共模分量。
圖2. maxim的max9704立體聲d類放大器的調(diào)制方案
此類d類放大器對(duì)輸出濾波器的要求,不同于具有傳統(tǒng)差分輸入和互補(bǔ)pwm輸出的放大器。與pwm相比,max9704調(diào)制方案的輸出往往含有較高的共模信號(hào),設(shè)計(jì)輸出濾波器時(shí)需要考慮這點(diǎn)。正如后面的實(shí)例所示,傳統(tǒng)差分濾波器拓?fù)浣Y(jié)構(gòu)的效果往往不太理想。
圖3a給出了傳統(tǒng)的pwm型d類輸出lc濾波器,及其理想值。為簡(jiǎn)單起見,可假設(shè)揚(yáng)聲器負(fù)載具有理想的8電阻,并且忽略電感的直流阻抗。通過一些簡(jiǎn)單的spice仿真便可得出問題所在。圖3b給出了圖3a中濾波器對(duì)差分輸入信號(hào)的頻率響應(yīng)。給出了兩個(gè)輸出結(jié)點(diǎn)(filt1,filt2)相對(duì)于gnd的響應(yīng)曲線。圖中給出的器件值在30khz的頻率以上具有理想的二階滾降,以及理想的瞬態(tài)。音頻帶內(nèi)群延遲特性在4μs內(nèi)保持平坦。
圖3. (a) 傳統(tǒng)的差模無源lc濾波器,(b) 對(duì)于差分輸入信號(hào)的頻響,(c) 共模信號(hào)頻響。
圖3c給出了共模輸入時(shí)同一濾波器的輸出。同樣,兩個(gè)輸出的響應(yīng)曲線均相對(duì)于gnd。輸出結(jié)果(y軸偏移)具有很大的尖峰,并具有明顯的欠阻尼。結(jié)合共模信號(hào)下濾波器的等效電路(圖4),就很容易理解為什么會(huì)出現(xiàn)這一結(jié)果。由于仿真時(shí)采用理想匹配的電感和電容器,因此阻性負(fù)載上差分信號(hào)為零,因此不會(huì)lc元件不會(huì)出現(xiàn)任何衰減。l1與c1諧振(l2與c3同理)產(chǎn)生峰值。在時(shí)域內(nèi)(圖中未顯示),這種情況將會(huì)出現(xiàn)較大的過沖和振蕩。注意,輸入共模信號(hào)時(shí),c2將引入一個(gè)零點(diǎn)。因此濾波器的截止頻率(此時(shí)稱作諧振頻率可能更加準(zhǔn)確)將高于差分輸入時(shí)的截止頻率。
圖4. 共模輸入下,圖3a中傳統(tǒng)lc濾波器的等效電路
這時(shí)你或許會(huì)問,這樣會(huì)有問題么?如果該頻率下輸出頻譜共模能量為零,那么便沒什么問題。然而,如果峰值頻率與d類放大器開關(guān)頻率正好相等,則揚(yáng)聲器和連線上將出現(xiàn)較大的輸出電壓幅度。同時(shí),max9704的擴(kuò)展頻譜調(diào)制(ssm)模式將使欠阻尼濾波器在音頻頻帶以上引入相當(dāng)?shù)脑肼?。擴(kuò)展頻譜模式是引腳可選的,此時(shí)高頻開關(guān)能量為“白噪聲”,可以通過逐周期隨機(jī)調(diào)整開關(guān)時(shí)間降低噪聲幅度。這種擴(kuò)展頻譜方案簡(jiǎn)化了無濾波應(yīng)用中的emi兼容性設(shè)計(jì)。
欠阻尼共模響應(yīng)問題
針對(duì)上述共模問題的解決方案之一是保留圖3a的基本結(jié)構(gòu),但增加抑制高諧振共模信號(hào)的阻尼元件。圖5a給出了在兩個(gè)輸出節(jié)點(diǎn)和gnd之間串聯(lián)rc元件。如果應(yīng)用中對(duì)效率的要求不是很高,可以在輸出節(jié)點(diǎn)和gnd之間僅連接一個(gè)電阻,但電容器c4和c5將有助于降低r1和r2上的額外功率損耗。
c4和c5的值應(yīng)權(quán)衡選?。阂环矫嬖龃骳4與c5值有助于r1和r2衰減尖峰,另一方面應(yīng)減小c4和c5降低高音音頻(高達(dá)20khz)下的損耗。如果共模截止頻率遠(yuǎn)大于差模頻率,則很容易進(jìn)行選擇,例如只需增加c2相對(duì)于c1和c3的比率既可實(shí)現(xiàn)。增加共模截止頻率,則可減小c4和c5的值,同時(shí)增大r1和r2的值,這樣將降低r1和r2上的音頻損耗。若共模截止頻率太高,則電纜上的共模成分就會(huì)過多,因此,必須合理選擇差分和共模的-3db頻點(diǎn)的比率。本案例的濾波器采用了1:5的比率。
圖5. 在傳統(tǒng)lc濾波器的每個(gè)輸出端增加一個(gè)rc網(wǎng)絡(luò)(a),可以改進(jìn)差分信號(hào)的頻響(b)和共模信號(hào)的頻響(c)。
圖5b為圖5a濾波器對(duì)差分輸入的響應(yīng),圖5c為共模輸入的響應(yīng)。注意:圖5c中共模截止頻率較高(-3db帶寬約為110khz,差分輸入為28khz),帶有平緩且合理控制的尖峰。該截止頻率遠(yuǎn)高于最高音頻(也低于d類開關(guān)頻率基波),因此具有較好的效果。
有些低開關(guān)頻率(200khz至300khz)應(yīng)用不適合采用圖5c所示的方案。對(duì)于這類產(chǎn)品可能需要采用其他方法和拓?fù)浣Y(jié)構(gòu)。max9704立體音d類放大器(圖6)可設(shè)置為940khz固定頻率模式(ffm)
(fs1 = 低,fs2 = 高),此時(shí)效果最佳。工作在ffm模式下的max9704通過引腳選擇將開關(guān)周期設(shè)為恒定值(具有三個(gè)可選項(xiàng)),以滿足應(yīng)用需求。
圖6. max9704立體聲d類功率放大器的典型應(yīng)用電路
圖7和圖8給出使用圖5濾波器對(duì)max9704進(jìn)行濾波時(shí)的時(shí)域性能。兩種情況下負(fù)載阻抗均為8。圖7同時(shí)顯示了filt1和filt2節(jié)點(diǎn)的波形圖(頂部的跡線),以及得的1khz差分輸出波形(底部的跡線)。頂部跡線的噪聲是輸出開關(guān)信號(hào)濾波以后的殘余信號(hào)(電源電壓為15v)。圖8為圖7跡線的細(xì)節(jié)顯示。注意:紋波主要來自940khz開關(guān)頻率,兩通道上表現(xiàn)為共模信號(hào)的形式。還應(yīng)注意輸出上沒有高次諧波,表明有效抑制了emi (幅射emi的起始測(cè)試頻率通常高于30mhz) 。
圖7. 用max9704驅(qū)動(dòng)圖5a電路時(shí)filt1和filt2上產(chǎn)生的信號(hào)波形(同時(shí)顯示在頂部的跡線),以及差分輸出(底部的跡線)。
8. 頂部跡線顯示了圖5a電路輸出中殘余的紋波電壓,紋波成分主要為開關(guān)頻率基波(此時(shí)為940khz)。濾波器高于該頻點(diǎn)的二階滾降很好的抑制了所有高次諧波。紋波幾乎只有共模分量(底部的跡線)。
關(guān)說明
本文討論的濾波器設(shè)計(jì)均假設(shè)負(fù)載阻抗為8。音圈電感導(dǎo)致20khz的頻率范圍內(nèi),多數(shù)寬范圍動(dòng)圈揚(yáng)聲器的阻抗變高。該特性有助于實(shí)現(xiàn)高效率的無濾波器工作,但選擇濾波器件以降低emi時(shí),應(yīng)考慮阻抗的上升。
試圖評(píng)估和描述d類放大器特性時(shí),為了進(jìn)行器件選型和評(píng)估,即便在實(shí)驗(yàn)室環(huán)境下,音頻設(shè)計(jì)人員也往往需要進(jìn)行濾波。即使不用濾波器的最終產(chǎn)品能通過emc測(cè)試,仍然可以通過放大器性能測(cè)試來發(fā)現(xiàn)問題。許多音頻分析儀是專為測(cè)量傳統(tǒng)音頻放大器的thd+n或幅度響應(yīng)而設(shè)計(jì)的,當(dāng)用于測(cè)試無濾波d類放大器時(shí)往往會(huì)出現(xiàn)錯(cuò)誤。圖5所示電路適合用于測(cè)試(正確加載8電阻負(fù)載),但需要注意33μh的電感可能引入的非線性將限制了thd測(cè)量。氣隙元件往往具有最佳的測(cè)量結(jié)果,但尺寸往往限制其在實(shí)際產(chǎn)品中的應(yīng)用!
評(píng)論