采用DSP TMS320F28335的三相SPWM變頻電源的
SVPWM算法
變頻電源的核心就是SVPWM波的產(chǎn)生,SPWM波是以正弦波作為基準波(調制波),用一列等幅的三角波(載波)與基準正弦波相比較產(chǎn)生PWM波的控制方式。當基準正弦波高于三角波時,使相應的開關器件導通;當基準正弦波低于三角波時,使相應的開關器件截止。由此,逆變器的輸出電壓波形為脈沖列,其特點是:半個周期中各脈沖等距等幅不等寬,總是中間寬,兩邊窄,各脈沖面積與該區(qū)間正弦波下的面積成比例。這種脈沖波經(jīng)過低通濾波后可得到與調制波同頻率的正弦波,正弦波幅值和頻率由調制波的幅值和頻率決定。
本文采用不對稱規(guī)則采樣法,即在三角波的頂點位置與低點位置對正弦波進行采樣,它形成的階梯波更接近正弦波。不規(guī)則采樣法生成SPWM波原理如圖7所示。圖中,Tc是載波周期,M是調制度,N為載波比,Ton為導通時間。
由圖7得:
當k為偶數(shù)時代表頂點采樣,k為奇數(shù)時代表底點采樣。
SVPWM算法實現(xiàn)過程:
利用F28335內部的事件管理器模塊的3個全比較單元、通用定時器1、死區(qū)發(fā)生單元及輸出邏輯可以很方便地生成三相六路SPWM波形。實際應用時在程序的初始化部分建立一個正弦表,設置通用定時器的計數(shù)方式為連續(xù)增計數(shù)方式,在中斷程序中調用表中的值即可產(chǎn)生相應的按正弦規(guī)律變化的SPWM波。SPWM波的頻率由定時時間與正弦表的點數(shù)決定。
SVPWM算法的部分代碼如下:
PID調節(jié)算法
在實際控制中很多不穩(wěn)定因素易造成增量較大,進而造成輸出波形的不穩(wěn)定性,因此必須采用增量式PID算法對系統(tǒng)進行優(yōu)化。PID算法數(shù)學表達式為
Upresat(t)= Up(t)+ Ui(t)+ Ud(t)
其中,Up(t)是比例調節(jié)部分,Ui(t)是積分調節(jié)部分,Ud(t)是微分調節(jié)部分。
本文通過對A/D轉換采集來的電壓或電流信號進行處理,并對輸出的SPWM波進行脈沖寬度的調整,使系統(tǒng)輸出的電壓保持穩(wěn)定。
PID調節(jié)算法的部分代碼如下:
頻率檢測算法
頻率檢測算法用來檢測系統(tǒng)輸出電壓的頻率。用TMS320F28335片上事件管理器模塊的捕獲單元捕捉被測信號的有效電平跳變沿,并通過內部的計數(shù)器記錄一個周波內標頻脈沖個數(shù),最終進行相應的運算后得到被測信號頻率。
實驗結果
測量波形
在完成上述硬件設計的基礎上,本文采用特定的PWM控制策略,使逆變器拖動感應電機運行,并進行了短路、電機堵轉等實驗,證明采用逆變器性能穩(wěn)定,能可靠地實現(xiàn)過流和短路保護。圖8是電機在空載條件下,用數(shù)字示波器記錄的穩(wěn)態(tài)電壓波形。幅度為35V,頻率為60Hz。
圖7 不規(guī)則采樣法生成SPWM波原理圖
圖8 輸出線電壓波形
測試數(shù)據(jù)
在不同頻率及不同線電壓情況下的測試數(shù)據(jù)如表1所示。
表1 不同輸出頻率及不同線電壓情況下實驗結果
結果分析
由示波器觀察到的線電壓波形可以看出,波形接近正弦波,基本無失真;由表中數(shù)據(jù)可以看出,不同頻率下,輸出線電壓最大的絕對誤差只有0.6V,相對誤差為1.7%。
本文設計的三相正弦波變頻電源,由于采用了不對稱規(guī)則采樣算法和PID算法使輸出的線電壓波形基本為正弦波,其絕對誤差小于1.7%;同時具有故障保護功能,可以自動切斷輸入交流電源。因此本系統(tǒng)具有電路簡單、抗干擾性能好、控制效果佳等優(yōu)點,便于工程應用,具有較大的實際應用價值。
評論