新聞中心

EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

作者: 時(shí)間:2011-12-29 來源:網(wǎng)絡(luò) 收藏

基于NCP165190W反激式單級(jí)原理與設(shè)計(jì)

NCP1651是一種單級(jí)功率因數(shù)控制器。介紹了NCP165l的結(jié)構(gòu)、主要特點(diǎn)及基于NCPl651的90W通用輸入單級(jí)原理與設(shè)計(jì)。

關(guān)鍵詞:NPCI65l;單級(jí);控制器;反激拓?fù)?;設(shè)計(jì)

0 引言
  單級(jí)PFC的基本拓?fù)浼捌涔ぷ髟碓凇峨娫醇夹g(shù)應(yīng)用》等學(xué)術(shù)期刊中,已有許多文章對(duì)其進(jìn)行了介紹。盡管單級(jí)PFC電路儀需一個(gè)功率升關(guān),電路拓?fù)浜?jiǎn)單,效率較高,但單級(jí)PFC的實(shí)用電路卻非常少見。眾所周知,用于兩級(jí)PFC電路的控制器lC品種和型號(hào)非常多,相關(guān)設(shè)計(jì)技術(shù)早已十分成熟,而單極PFC專用控制器芯片,長(zhǎng)時(shí)間沒有問世。迄今為止,單級(jí)PFC控制IC僅有兩款:一個(gè)是數(shù)字單級(jí)PFC控制器iW2202,另一個(gè)則是安森美半導(dǎo)體公司推出的NCPl651。NCPl65l是一種適用于反激式拓?fù)涞膯渭?jí)PFC控制器?;贜CPl65l的反激式隔離,可提供中、高DC輸出電壓和50~250W的輸出功率,滿足IEC1000-3-2諧波電流限制要求,并能將初級(jí)側(cè)電壓限制在700V之內(nèi)。

1 NCPl65l的結(jié)構(gòu)與主要特點(diǎn)
  NCP1651采用16引腳SOIC封裝,其中引腳14和15未連接。NCP1651的芯片電路組成與NCPl650的內(nèi)部結(jié)構(gòu)存在很多相同之處,其內(nèi)部結(jié)構(gòu)框圖如圖1所示。
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與


  NCP165I的各個(gè)引腳功能見表1。
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與
  NCPl65l是一種固定頻率平均電流模式PWM單級(jí)PFC控制器,被用作驅(qū)動(dòng)工作在連續(xù)導(dǎo)電模式(CCM)或不連續(xù)導(dǎo)電模式(DCM)的反激變換器拓?fù)洌⒕幊唐骄斎腚娏鞲SAC線路電壓。利用平均電流模式控制CCM算法,可以限制峰值初級(jí)電流,提供接近于1的功率因數(shù)。固定頻率操作,能使輸入濾波器電路設(shè)計(jì)簡(jiǎn)化。NCPl65l內(nèi)置高精度專利乘法器,與傳統(tǒng)模擬乘法器比較,具有更優(yōu)異的性能。NCPl65l提供逐周峰值和平均電流限制、Vcc欠電壓鎖定和過溫度(門限為160℃,帶30℃滯回)關(guān)閉等保護(hù)功能。NCP1651內(nèi)置高壓?jiǎn)?dòng)電路,可直接連接到橋式整流器輸出端工作。在IC開始工作后,高壓?jiǎn)?dòng)電路截止。
  NCPl651的推出,標(biāo)忐著單級(jí)PFC技術(shù)開始在中、低功率電平上進(jìn)入了實(shí)用化階段。

2 基于NCPl65l的90W單級(jí)PFC變換器原理與設(shè)計(jì)
2.1 基于NCPl65I的90W通用輸入單級(jí)PFC變換器電路及其工作原理
  由NCPl651組成的90W通用輸入單級(jí)PFC反激式變換器電路如圖2所示。該變換器的AC輸入線路電壓范圍為85~265V.DC輸出電壓為48V,工作在CCM方式。
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

  在系統(tǒng)加電之后,橋式整流器(D1~D4)輸出經(jīng)D7對(duì)電容C16充電。當(dāng)C16上的電壓達(dá)到17V的門限電平時(shí),IC1(NCPl651)腳16導(dǎo)通,內(nèi)部高壓?jiǎn)?dòng)電路中的電流源從腳13流出,對(duì)連接在變壓器T1偏置繞組(⑦與⑤之間)上的電容C21充電。當(dāng)C21上的電壓超過10.8V的導(dǎo)通門限電壓時(shí),IC1啟動(dòng),變換器開始工作,IC1引腳Vcc上的所需電流,由T1偏置繞組、D9、C21和齊納二極管D15組成的輔助電源供給。在TC1開始工作后,內(nèi)部高壓?jiǎn)?dòng)電路則截止。IC1的振蕩器頻率由腳3上的電容C3值確定。在C3=470 pF的條件下,開關(guān)頻率為100 kHz。
  S1源極電阻R5用作感測(cè)初級(jí)電流。在S1漏極上連接的阻尼電路中,D13和D14為瞬態(tài)電壓抑制(TVS)二極管。前者擊穿電壓為214V,后者擊穿電壓為68V。IC1腳8上連接的晶體管Q1等組成外部關(guān)閉電路。次級(jí)側(cè)的IC3(MC3303)為四運(yùn)算放大器芯片。其中,lC3B作為誤差放大器使用,lC3D被配置成差分放大器,IC3A和IC3C分別配置為輸出欠電壓和過電壓比較器。IC2(TL431)為lC3B的同相端(腳5)和IC3A的反相輸入端(腳2)提供2.5V的參考電壓。輸出電壓(U0)經(jīng)R33、R23和R24、R25組成的分壓器分壓,將誤差放大器IC3B反相輸入端(腳6)上的電壓設(shè)置在2.5V。
  電壓調(diào)節(jié)環(huán)路的工作過程是:當(dāng)輸出電壓低于其額定值(48V)時(shí),在IC3B腳6上的電壓將低于腳5上2.5V的參考電壓,致使TC3B輸出電壓增加,光耦合器LED電流減小,從而引起光耦合器晶體管電流減小,IC1腳8上的電壓升高。而IC1腳8上電壓的提高,使內(nèi)部參考乘法器輸出增加,NCPl65l的PWM占空比增加。
  欠電壓比較器IC3A為光耦合器IC4提供驅(qū)動(dòng)。在出現(xiàn)欠電壓情況時(shí),IC3A輸出變低,IC4中LED電流減小,使NCPl651進(jìn)入高占空比狀態(tài),迫使輸出電壓升至欠電壓限制電平以上。
  過電壓比較器IC3C的輸出與IC3B的輸出進(jìn)行“或”運(yùn)算。在過電壓情況下,IC3C輸出變?yōu)镺V,使IC4中LED電流達(dá)到最大值,占空比減小到零,直到輸出電壓降至過電壓限制電平以下。
  IC3D被配置成差分放大器,用于感測(cè)DC輸出電流,提供一個(gè)經(jīng)二極管進(jìn)行“或”運(yùn)算的信號(hào)進(jìn)入反饋分壓器。過載電流限制被設(shè)置在滿載的125%,即(P0/U0)1.25=(90/48)×1.25=2.34A。電阻R31和R32用作感測(cè)輸出電流,R29、R30用作設(shè)置電流感測(cè)放大器增益。放大器增益為:

  G=(R29/R30)+1=(3kΩ/0.3kΩ)+1=11

  放大器輸入電壓為:2.34A×(R31+R32)=2.34×0.14Ω=0.33V。差分放大器輸出電壓為:0.33V×G=0.33V×11=3.63V。
  當(dāng)輸出負(fù)載電流增加時(shí),電流感測(cè)放大器輸出也相應(yīng)增加。當(dāng)放大器輸出電壓與_二極管D12的電壓降之差值高于2.5V時(shí),誤差放大器IC3B反相輸入端上的電壓被拉高,IC3B輸出電壓降低,IC4中LED電流增大,lC4中晶體管電流相應(yīng)增加,NCPl65l腳8上的電壓降低,占空比減小,從而實(shí)現(xiàn)限流過載保護(hù)。
2.2 主要元件的選擇
  在功率元器件選擇時(shí),需要考慮初級(jí)側(cè)電流。當(dāng)變換器在CCM工作時(shí),電流波形如圖3所示。
        基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

  在MOSFET(S1)導(dǎo)通期間,電流在初級(jí)側(cè)流動(dòng)。在MOSFET關(guān)斷期間,電流在次級(jí)側(cè)流動(dòng)。
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

2.2.2 變壓器的選擇
  變壓器T1是反激變換器中的關(guān)鍵元件。變壓器初級(jí)與次級(jí)繞組之間的匝數(shù)比n=Np/Ns,直接影響初級(jí)側(cè)的電壓值。為了減小漏感產(chǎn)生的尖峰脈沖電壓,應(yīng)盡可能降低變壓器漏感。
  為了減小輸出反射到初級(jí)的電壓,選擇匝數(shù)比n=4,初級(jí)Np=76匝,次級(jí)Ns=19匝。
  為了減小漏感.選擇TDK SRW42EC-U04H1/4寬窗口磁心,以減少繞組層數(shù)。同時(shí),為了增強(qiáng)耦合,初級(jí)與次級(jí)繞組交錯(cuò)是有利的。具體繞制方法是:先繞初級(jí)的45匝(一層),接著繞次級(jí)19匝,然后再繞初級(jí)剩下的3l匝。按該法繞制,漏感僅為9μH。初級(jí)繞組的電感值Lp=1 mH。

  如果把76匝初級(jí)繞組分兩層繞完后再繞次級(jí)繞組19匝,漏感值將增加到37μH。
2.2.3 功率MOSFET(S1)的選擇
  MOSFET的選擇,首先應(yīng)確定其額定值電壓(VDS)。在MOSFET關(guān)斷期間,漏極與源極之間的峰值電壓為:
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

  式中:Uin(max)=265V;
Uf為次級(jí)整流二極管(D5)的導(dǎo)通壓降,Uf=0.7V;
Uspke為漏感產(chǎn)牛的尖峰脈沖電壓,選擇
Uspike=130V,有足夠的安全余量。
  將已知數(shù)據(jù)代入式(4)得:
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

  S1可選擇SPAlIN80C3型N溝道MOSFET,其額定電壓UDS=800V,額定電流ID=11A,導(dǎo)通態(tài)電阻RDS(on)=4.5Ω。
2.2.4 輸出電容器的選擇
  輸出電容Co值由式(5)確定:
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

  式中:TH為所需保持時(shí)間,即AC線路的周期時(shí)間,TH=1/50Hz=O.02s;
Uo(min)為最小輸出電壓,選擇Uo(min)=33V。
  將相關(guān)數(shù)據(jù)代入式(5)得:
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與
  Co用兩個(gè)1500μF/63V的電容并聯(lián)而成,即在圖2中,C22=C23=1500μF。
2.2.5 電流感測(cè)電阻R5的選擇
  電流感測(cè)電阻R5的計(jì)算公式是:
基于NCP1651控制器的90W反激式單級(jí)PFC變換器原理與

  電路中其它元件,可根據(jù)NCPl65l的芯片電路組成和電氣參數(shù)確定其數(shù)值。

3 結(jié)語
  基于單級(jí)PFC控制器NCPl651的90W通用輸入反激式變換器,儀需用一個(gè)功率開關(guān)和較少量的元件,就能獲得高輸入功率因數(shù)和低輸入電流THD。在115V的AC輸入電壓和滿載下,變換器PF=O.998,THD=3.12%;在230V的AC輸入和滿載下,PF=O.97l,THD=6.8%。從85V到230V的AC輸入和從無載到滿載變化時(shí),輸出電壓調(diào)節(jié)率小于O.02%,輸出電壓紋波僅為2VP-P。NCPl651為設(shè)計(jì)分布式電源獲得單級(jí)PFC和步降變換,提供了行之有效的創(chuàng)新方案。



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉