基于稀疏信號(hào)結(jié)構(gòu)信息的壓縮檢測(cè)算法
為了進(jìn)一步驗(yàn)證算法的有效性,下面針對(duì)應(yīng)用于雷達(dá)系統(tǒng)中的線(xiàn)性調(diào)頻信號(hào)進(jìn)行檢測(cè)。在雷達(dá)系統(tǒng)中,線(xiàn)性調(diào)頻信號(hào)是一種非常重要的信號(hào)形式,信號(hào)瞬時(shí)頻帶寬的特性雖然提高了雷達(dá)系統(tǒng)的目標(biāo)檢測(cè)及識(shí)別能力,卻給信號(hào)采集及數(shù)據(jù)處理帶來(lái)極大壓力,如何使用較少的采集數(shù)據(jù)完成檢測(cè)是一個(gè)關(guān)鍵技術(shù)[7]。在這里,我們使用文獻(xiàn)[12]中的四參量chirplet字典來(lái)生成線(xiàn)性調(diào)頻信號(hào)。設(shè)生成的線(xiàn)性調(diào)頻信號(hào)的信號(hào)長(zhǎng)度為1024,相對(duì)chirplet字典的稀疏系數(shù)滿(mǎn)足正態(tài)分布[4],這里稀疏度設(shè)為5,信噪比為10dB。下面驗(yàn)證本文所提算法與MP檢測(cè)算法在不同測(cè)量點(diǎn)數(shù)下的對(duì)線(xiàn)性調(diào)頻信號(hào)的檢測(cè)性能。
本文引用地址:http://2s4d.com/article/203220.htm從圖中可以看出,本文所提算法能使用較少的測(cè)量點(diǎn)數(shù)獲得較高的檢測(cè)性能,這可以減輕接收系統(tǒng)系統(tǒng)在采樣和數(shù)據(jù)處理方面的壓力。
結(jié)束語(yǔ)
本文基于稀疏信號(hào)的結(jié)構(gòu)信息提出一種新的壓縮檢測(cè)方法,該方法利用改進(jìn)的壓縮采樣匹配追蹤(CoSaMP)部分重構(gòu)算法獲得目標(biāo)信號(hào)的估計(jì),通過(guò)對(duì)比位置與幅值信息的相似度來(lái)完成檢測(cè)。與原有的檢測(cè)方法相比,本文提出的方法更高效、更快速、更穩(wěn)定。實(shí)驗(yàn)結(jié)果表明,在低信噪比時(shí),本文方法在較少的迭代次數(shù)下,可以使用較少的采樣數(shù)據(jù)獲得較高的檢測(cè)成功率。
參考文獻(xiàn):
[1] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J], IEEE Trans. Inf. Theory. 2006 , 52(2) :489–509.
[2] D. Donoho, Compressed sensing[J], IEEE Transaction on Information Theory, 2006, 52(4): 1289-1306.
[3] Y. Tsaig, D. L. Donoho, Extensions of compressed sensing[J], Signal Processing. 2006, 86(3): 549–571.
[4] M.F. Duarte, M.A. Davenport, M.B. Wakin, R.G. Baraniuk, Sparse signal detection from incoherent projection[C], IEEE Int. Conf. Acoustics Speech and Signal Processing(ICASSP), Toulouse , France, May 2006, 305-308.
[5] Jun Wu, Naian Liu, Yanfei Zhang, Changlin Shen. Blind detection of frequency hopping signals based on compressive sensing[C]. Consumer Electronic, Communication and Networks (CECNet) ,2012, 1691-1694.
[6] J. Haupt, R. Nowak, A. Yeh, Compressive sampling for signal classification[C], In 2006 Asilomar Conf. on Signals, System & Computer, Oct. 2006, 1430-1434.
[7] 劉冰,付平,孟升衛(wèi).基于正交匹配追蹤的壓縮感知信號(hào)檢測(cè)算法[J].儀器儀表學(xué)報(bào),2009,31,(9):1959-1964
[8] J. Haupt, R. Nowak. Compressed sampling for signal detection [C]. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii April 2007, 1509-1512
[9] 劉冰,付平,孟升衛(wèi).基于采樣值數(shù)字特征的壓縮感知信號(hào)檢測(cè)算法[J].儀器儀表學(xué)報(bào),2011,32,(3):577-582
[10] Joachim H.G. Ender, On compressive sensing applied to radar [J], Signal Processing. 2010, 90(5):1402–1414.
[11] D. Needell and J.A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J],Applied and Computational Harmonic Analysis, 2009, 26(3):301–321.
[12] O. Yeste-Ojeda, J. Grajal, and G. Lopez-Risueno. Atomic decompositionfor Radar applications[J], IEEE Trans. Aerosp. Electron. Syst., 2008, 44(1): 187–200.
評(píng)論