新聞中心

EEPW首頁 > 手機(jī)與無線通信 > 設(shè)計應(yīng)用 > 擁抱大數(shù)據(jù)時代 解讀5G通信時鐘同步技術(shù)

擁抱大數(shù)據(jù)時代 解讀5G通信時鐘同步技術(shù)

作者:Wofle Yu 時間:2021-10-13 來源:電子產(chǎn)品世界 收藏

 

本文引用地址:http://2s4d.com/article/202110/428799.htm

前言

隨著大數(shù)據(jù)、云計算和物聯(lián)網(wǎng)時代的到來,通信系統(tǒng)從集中式系統(tǒng)向分布式系統(tǒng)發(fā)展,在集中式系統(tǒng)中,所有進(jìn)程或模塊都從系統(tǒng)唯一的全局時鐘中獲取時間,系統(tǒng)內(nèi)任何兩個事件都有著明確的先后關(guān)系。

在分布式系統(tǒng)中,系統(tǒng)無法為彼此間相互獨(dú)立的模塊提供一個統(tǒng)一的全局時鐘。由于這些本地時鐘的計時速率、運(yùn)行環(huán)境不一致,因此,在一段時間后,這些本地時鐘也會出現(xiàn)不一致。為了讓這些本地時鐘再次達(dá)到相同的時間值,必須進(jìn)行時間同步操作。

技術(shù)型授權(quán)代理商Excelpoint世健公司的工程師Wolfe Yu,就5G通信時鐘同步的相關(guān)知識進(jìn)行了解讀。

時鐘同步技術(shù)

系統(tǒng)中各時鐘的同步,需要對比各時鐘與系統(tǒng)標(biāo)準(zhǔn)時鐘的差值,以及對相對漂移做修正處理。比如,在GPS導(dǎo)航系統(tǒng)用戶設(shè)備中,我們一般通過調(diào)整1PPS信號前沿出現(xiàn)時刻,來做時鐘同步。還有一種就是通過以太網(wǎng)的時鐘恢復(fù)技術(shù)來做時鐘同步,這個技術(shù)稱為同步以太技術(shù),或者SyncE。當(dāng)然,還有其他一些技術(shù),比如通過無線電波來傳播時間信息,不過這些傳輸方式只能實(shí)現(xiàn)同頻傳輸。

為了達(dá)到更高精度要求,有人提出了一種PTP的傳輸方式。后來,隨著5G技術(shù)的不斷提高,又提出采用SyncE+PTP相結(jié)合的方式。

1634112427490617.jpg

GPS時鐘同步

GPS同步三維坐標(biāo)理論

GPS系統(tǒng),利用工作衛(wèi)星確定接收機(jī)三維坐標(biāo),得到接收機(jī)的時鐘偏差,來進(jìn)行授時。理論上來說,只要接收到4顆或者4顆以上工作衛(wèi)星,通過空間三維坐標(biāo)公式,就可以準(zhǔn)確地對其進(jìn)行定位和授時,其坐標(biāo)理論如下圖,具體推導(dǎo)過程不贅述。

image.png

GPS高穩(wěn)頻綜器系統(tǒng)原理

2004年, Nicholls和Carleton提出了著名的N/C系統(tǒng),N/C系統(tǒng)的核心技術(shù)是利用10MHz的OCXO同時接入一個分頻器和一個倍頻器,分別產(chǎn)生1pps和160MHz的信號,利用鎖相環(huán),實(shí)時校正OCXO的輸出頻率。

3.png

為了便于直觀分析,我們重構(gòu)系統(tǒng),GPS接收機(jī)產(chǎn)生1PPS輸出信號,和OCXO產(chǎn)生的10MHz分頻輸出1PPS信號,再通過10MHz倍頻160MHz的信號檢測相位偏移量,實(shí)現(xiàn)同步。

4.png

同步的本質(zhì),就是通過鎖相環(huán)來調(diào)整頻率和相位,數(shù)字鎖相環(huán)DPLL對數(shù)字電路噪聲容忍能力強(qiáng)、捕獲時間快、易于集成、可以提供復(fù)雜的處理算法。

數(shù)字鎖相環(huán)主要包括鑒相器、數(shù)字環(huán)路濾波、相位累加器、DA轉(zhuǎn)換等。鑒相器把本地估算信號和輸入信號做相位比較,產(chǎn)生對應(yīng)相位誤差序列,經(jīng)過環(huán)路濾波,產(chǎn)生相位控制字,調(diào)節(jié)相位,同時,頻率控制字調(diào)整頻率輸出。

5.png

目前,大多數(shù)鎖相環(huán)采用一種基于DDS+PLL的結(jié)構(gòu),通過分別計算頻率控制字和相位控制字做調(diào)整,來實(shí)現(xiàn)快速鎖定相位和頻率。

SyncE時鐘同步

SyncE(同步以太網(wǎng))架構(gòu)

同步以太網(wǎng)技術(shù),是一種采用以太網(wǎng)鏈路碼流恢復(fù)時鐘頻率的技術(shù),簡稱SyncE,在以太網(wǎng)源端使用高精度時鐘,利用現(xiàn)有的以太網(wǎng)物理層接口PHY發(fā)送數(shù)據(jù),在接收端通過CDR恢復(fù)并提取該時鐘頻率,保持高精度時鐘性能,SyncE技術(shù)框圖如下:

1634112507662742.png

CDR(時鐘數(shù)據(jù)恢復(fù))基本原理

以太網(wǎng)PHY層傳輸NRZ碼流,在傳輸側(cè),對碼流重新編碼成4B/5B、8B/10B、64B/66B碼,通過CDR(時鐘數(shù)據(jù)恢復(fù))可以完成時鐘和數(shù)據(jù)恢復(fù)。

1634112530609080.png

CDR原理大致如下:鑒頻環(huán)Coarse Loop完成頻率捕獲,鑒相環(huán)Fine Loop調(diào)整相位和恢復(fù)時鐘關(guān)系,恢復(fù)數(shù)據(jù)信號。

8.png

CDR電路主要分為:

●   雙環(huán)結(jié)構(gòu)CDR、 由鎖相環(huán)和延遲鎖相環(huán)組成,鎖相環(huán)提供所需頻率的低抖動正交時鐘,鎖相環(huán)將正交時鐘的相位調(diào)整為最佳采樣相位;

●   全數(shù)字化CDR、此電路采用全數(shù)字電路通過過采樣法實(shí)現(xiàn),功耗較低,但精度有限;

●   還有一種無參考時鐘CDR、此電路不需要提供片外參考時鐘,應(yīng)用靈活,但工作頻率范圍較小。

SyncE在時鐘同步中,表現(xiàn)出了非常出色的頻率跟蹤作用,但是SyncE在時鐘傳輸中無法判斷時鐘信號在線路上的傳輸延時。

精確時間協(xié)議PTP(Precision time protocol)演進(jìn)

網(wǎng)絡(luò)時間同步協(xié)議NTP(Network time protocol)理論

PTP是由NTP演變過來的,我們先談?wù)凬TP網(wǎng)絡(luò)協(xié)議,從時鐘向主時鐘發(fā)送一個消息包,記錄發(fā)出消息包的從時間戳T1,主時鐘收到消息包立即記錄主時間戳T2,同時,主時鐘向從時鐘返回一個帶主時鐘時間戳T3的消息包,從時鐘收到返回消息包后,立刻記錄下從時鐘的時間戳T4。

9.png

同時,我們假定雙向路徑對稱,即主到從或者從到主所用時間一致。基于以上,我們可以很輕松得出雙向路徑的傳送時間。

缺點(diǎn):純軟件計算時間,需要組織報文傳輸,需要多次校準(zhǔn),報文傳輸存在不對稱,延時等可能,所以精度不高。

精確時間協(xié)議PTP(Precision time protocol)理論

IEEE 1588 PTP協(xié)議是在NTP協(xié)議基礎(chǔ)上做了一些優(yōu)化,在硬件上要求每個網(wǎng)絡(luò)節(jié)點(diǎn)必須有一個包含實(shí)時時鐘的網(wǎng)絡(luò)接口卡來滿足時間戳要求。

IEEE 1588網(wǎng)絡(luò)時鐘主要分成普通時鐘OC(Ordinary clock)、邊界時鐘BC(Boundary clock),只有一個PTP通信端口的時鐘是普通時鐘,有多個PTP通信端口的時鐘是邊界時鐘,每個PTP端口獨(dú)立通信。理論上來說,我們首先確定一個最優(yōu)的時鐘作為該網(wǎng)主時鐘。PTP通過時戳單元(TSU)來標(biāo)記主從時鐘時間戳,TSU同時監(jiān)測輸入輸出數(shù)據(jù)流,當(dāng)識別到IEEE 1588 PTP數(shù)據(jù)包的前導(dǎo)碼時發(fā)布一個時間戳,用于精確標(biāo)記PTP時間數(shù)據(jù)包的到達(dá)或者離開時間。

10.png

PTP協(xié)議基于純軟件同步數(shù)據(jù)包傳輸,PTP通信報文主要分為:同步報文Sync,跟隨報文Follow_up(備注:Follow_up message不是必須的,部分模式不需要,例如one-step模式),延遲請求報文Delay_Req,延遲應(yīng)答報文Delay_Resp和管理報文。

11.png

IEEE 1588 PTP協(xié)議時間偏差修正:

◆   主時鐘向從時鐘發(fā)送Sync報文,并記錄發(fā)送時間tm1,同時啟動定時器,從時鐘收到該報文后,記錄接收時間ts1;

◆   主時鐘接著發(fā)送攜帶tm1的Follow_up報文;

◆   通過以上兩條信息,計算偏移時間Offset;

◆   間隔時間主時鐘向從時鐘發(fā)送第二條Sync報文,并記錄發(fā)送時間tm2,從時鐘收到該報文后,記錄接收時間ts2;

◆   主時鐘接著發(fā)送攜帶tm2的Follow_up報文;

◆   通過以上偏移時間Offset,修正ts時間。

基于以上步奏,修正ts時間與tm時間一致。

1634112605214348.png

IEEE 1588 PTP協(xié)議延遲計算:

◆   主時鐘向從時鐘發(fā)送Sync報文,并記錄發(fā)送時間t1,從時鐘收到該報文后,記錄接收時間t2;

◆   主時鐘接著發(fā)送攜帶t1的Follow_up報文;

◆   從時鐘向主時鐘發(fā)送Delay_req報文,用于發(fā)起反向傳輸延時的計算,并記錄發(fā)送時間t3,主時鐘收到該報文后,記錄接收時間t4;

◆   主時鐘收到Delay_req報文之后,回復(fù)一個攜帶有t4的Delay_resp報文。

基于以上4個時間戳,由此可以計算出各時間延遲。

13.png

SyncE+PTP理論

IEEE 1588 PTP同步最基本的應(yīng)用前提就是必須建立在上下行鏈路時鐘頻率嚴(yán)格一致的基礎(chǔ)上,如果上下行鏈路時鐘不一直,那么時間同步的精度就會大打折扣。

1634112632420193.png

利用SyncE,從設(shè)備通過以太網(wǎng)獲取主時鐘頻率,恢復(fù)出精準(zhǔn)的時鐘頻率,協(xié)助PTP來實(shí)現(xiàn)相位對齊及時間同步。

15.png

Microchip解決方案

Excelpoint世健的工程師Wolfe Yu介紹:世健代理的Microchip旗下?lián)碛衂arlink、Maxim Timing & Sync BU、Micrel、Vectron、Vitesse、Actel等近60年歷史的完整時鐘方案提供商,可以給用戶提供交鑰匙方案。

1634112674271050.png

SyncE & IEEE 1588

Microchip多種時間解決方案,產(chǎn)品涵蓋GPS、SyncE以及IEEE1588混合集中式系統(tǒng)以及精確時間系統(tǒng),可以滿足高中低檔不同組合的產(chǎn)品需求。

1634112691730420.png

ZL30735主要特點(diǎn)

多達(dá)5路獨(dú)立通道DPLL;

3路NCO、分離XO、備用時鐘模式混合通道DPLL;

多通道Frac_N輸出分頻器;

每個通道支持任何頻率轉(zhuǎn)換;

多達(dá)10通道差分或者單端輸入,10通道差分或者20通道CMOS輸出;

滿足ITU-T G.8262, G.8262.1, G.813, G.812, Telcordia GR-1244, GR-253;

滿足ITU-T G.8261, G.8263, G.8273.2 (class A,B,C,D), G.8273.4;

嵌入式PPS;

抖動性能小于150 fs rms。

1634112711971160.png

OCXO

恒溫晶體振蕩器簡稱恒溫晶振OCXO(Oven Controlled Crystal Oscillator),是利用恒溫槽使晶體振蕩器中石英晶體諧振器的溫度來保持恒定。OCXO是由恒溫槽控制電路和振蕩器電路構(gòu)成,通常人們是利用熱敏電阻“電橋”構(gòu)成的差動串聯(lián)放大器,來實(shí)現(xiàn)溫度控制。

19.png

Microchip推出多種OCXO可以供客戶選擇,輸出頻率最高可達(dá)3GHz,溫度穩(wěn)定性可達(dá)0.15ppb,老化率可達(dá)20ppb。

1634112746993157.png

VCXO

壓控振蕩器指輸出頻率與輸入控制電壓有對應(yīng)關(guān)系的振蕩電路(VCO),頻率是輸入信號電壓的函數(shù)的振蕩器VCO,振蕩器的工作狀態(tài)或振蕩回路的元件參數(shù)受輸入控制電壓的控制,就可構(gòu)成一個壓控振蕩器。

21.png

Microchip VCXO選型一覽:

1634112772255307.png

此外,Excelpoint世健可以提供基于Microchip集成IEEE1588、SyncE的PHY芯片和IP協(xié)議包的全套交鑰匙完整方案,助力5G小基站DU、RU及HUB,縮短客戶開發(fā)周期。

1634112788201408.png



關(guān)鍵詞:

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉