新聞中心

EEPW首頁 > 消費(fèi)電子 > 設(shè)計(jì)應(yīng)用 > 直接轉(zhuǎn)矩控制技術(shù)在電鏟車上的應(yīng)用

直接轉(zhuǎn)矩控制技術(shù)在電鏟車上的應(yīng)用

作者: 時間:2018-08-27 來源:網(wǎng)絡(luò) 收藏

0 引言

本文引用地址:http://2s4d.com/article/201808/387734.htm

近年來,大型露天礦山中的裝運(yùn)設(shè)備的生產(chǎn)力逐年提高,主要體現(xiàn)在大型電氣設(shè)備———電鏟車上。

電鏟車上的電氣設(shè)備主要由提升、推壓、行走和回轉(zhuǎn)等部分組成,系統(tǒng)一般采用技術(shù)十分成熟的直流驅(qū)動系統(tǒng)。然而,由于直流調(diào)速系統(tǒng)維修費(fèi)用較高,且直流牽引電機(jī)在功率、速度和空間尺寸方面受到限制,基本上沒有更大的潛力可挖。隨著交流變頻調(diào)速技術(shù)的日趨成熟,基于矢量技術(shù)和直接轉(zhuǎn)矩技術(shù)的調(diào)速系統(tǒng)以其寬廣的調(diào)速范圍,較高的穩(wěn)態(tài)轉(zhuǎn)速精度、快速的動態(tài)響應(yīng)以及可四象限運(yùn)行的性能位居交流傳動技術(shù)之首,其調(diào)速性能已經(jīng)可以和直流調(diào)速系統(tǒng)相媲美。因此,將交流調(diào)速系統(tǒng)引入到電鏟車上,使其采用籠型感應(yīng)電動機(jī)成為可能,從而使電控系統(tǒng)具有了速度更高、功率更大、可靠性更強(qiáng)、效率更高和維護(hù)費(fèi)用更低的優(yōu)點(diǎn)。

1 電鏟車電控系統(tǒng)的關(guān)鍵技術(shù)

將交流調(diào)速系統(tǒng)應(yīng)用于電鏟車的電控系統(tǒng)中,須解決以下幾個關(guān)鍵技術(shù)。

1)采用無速度的控制策略。由于電鏟車工作在露天環(huán)境中,灰塵污染嚴(yán)重,易覆蓋和堵塞測速編碼器,影響其正常工作。另外,電鏟車工作過程中會產(chǎn)生很強(qiáng)烈的自身震動,而強(qiáng)烈震動將很有可能導(dǎo)致編碼器的損害。

2)低頻時能保證電機(jī)的滿轉(zhuǎn)矩輸出,以避免低頻時滿負(fù)載工況下發(fā)生帶不動負(fù)載的現(xiàn)象。

3)滿負(fù)載時在空中制動停車或再提升時,在不允許采用機(jī)械制動抱閘的情況下,提升和推壓機(jī)構(gòu)不會出現(xiàn)下滑或溜車的現(xiàn)象。在電鏟車工作過程中,每完成一次鏟料—提升—回轉(zhuǎn)—下放—卸料的過程,提升和推壓機(jī)構(gòu)就需要在空中制動停車一次。若采用機(jī)械抱閘的制動方法來保證提升和推壓結(jié)構(gòu)的零速懸停,雖然可保障兩機(jī)構(gòu)不會出現(xiàn)下滑或溜車的現(xiàn)象,然而頻繁的抱閘動作一方面會嚴(yán)重縮短抱閘的使用周期,另一方面抱閘的打開和閉合所需的延時極大地限制了電鏟車的工作效率,同時抱閘與變頻器加減速時間的配合不當(dāng)還會引起溜車或變頻器堵轉(zhuǎn)跳閘的現(xiàn)象。

4)對再生制動能量的處理必須迅速可靠。

5)電鏟車行走機(jī)構(gòu)和回轉(zhuǎn)機(jī)構(gòu)由于采用同一套控制系統(tǒng),二者的切換必須快速可靠。

在上述的幾項(xiàng)關(guān)鍵技術(shù)中,尤以無技術(shù)和零速滿轉(zhuǎn)矩技術(shù)最為重要,它對于保證電鏟車安全可靠的工作起著舉足輕重的作用。

2 技術(shù)方案

根據(jù)目前比較成熟的高性能的交流調(diào)速技術(shù),有矢量控制技術(shù)和直接轉(zhuǎn)矩控制技術(shù)兩種方案可供選擇,這兩種技術(shù)方案都可以較好地解決電鏟車的技術(shù)難,然而直接轉(zhuǎn)矩控制技術(shù)由于所采用的基于定子磁場定向的控制方法,故不需要在電機(jī)軸端安裝測速編碼器來反饋轉(zhuǎn)子位置信號,而且仍能實(shí)現(xiàn)高精度的動靜態(tài)速度和力矩控制。另外,直接轉(zhuǎn)矩控制是對轉(zhuǎn)矩的直接控制,故對負(fù)載的變化響應(yīng)迅速,可實(shí)現(xiàn)快速的過程控制,同時又具有較高的過載能力和200豫的起動轉(zhuǎn)矩?;谥苯愚D(zhuǎn)矩控制技術(shù)能夠完全滿足電鏟車的關(guān)鍵技術(shù)要求,故在這里采用以直接轉(zhuǎn)矩控制技術(shù)為核心的交流調(diào)速裝置。

2.1 直接轉(zhuǎn)矩控制原理

交流異步電動機(jī)直接轉(zhuǎn)矩控制理論由德國魯爾大學(xué)Depenbrock 教授首次提出,后經(jīng)過ABB 公司10多年的逐步完善以及產(chǎn)品化,直接轉(zhuǎn)矩控制技術(shù)已成為當(dāng)今交流傳動的最先進(jìn)的控制方法之一。

直接轉(zhuǎn)矩控制技術(shù)是在變頻器內(nèi)部建立了一個交流異步電動機(jī)的軟件數(shù)學(xué)模型,根據(jù)實(shí)測的直流母線電壓、開關(guān)狀態(tài)和電流計(jì)算出一組精確的電機(jī)轉(zhuǎn)矩和定子磁通實(shí)際值,并將這些參數(shù)值直接應(yīng)用于控制輸出單元的開關(guān)狀態(tài),變頻器的每一次開關(guān)狀態(tài)都是單獨(dú)確定的,這意味著可以產(chǎn)生最佳的開關(guān)組合并對負(fù)載變化做出快速的轉(zhuǎn)矩響應(yīng),并將轉(zhuǎn)矩響應(yīng)限制在一拍以內(nèi),且無超調(diào),真正實(shí)現(xiàn)了對電動機(jī)轉(zhuǎn)矩和轉(zhuǎn)速的實(shí)時控制。控制原理圖如圖1 所示。

2.2 無測速及零速滿轉(zhuǎn)矩

矢量控制技術(shù)和直接轉(zhuǎn)矩控制技術(shù)在有測速傳感器條件下的控制精度相差無幾,大約為額定轉(zhuǎn)速的依0.01豫。然而,矢量控制技術(shù)的調(diào)速精度尤其是在零速附近對測速傳感器的依賴性較強(qiáng),當(dāng)傳感器失效時,其控制精度大為降低,只有額定轉(zhuǎn)速的依1%~3豫,很難保證電機(jī)零速時輸出滿轉(zhuǎn)矩的特性,從而出現(xiàn)提升和推壓機(jī)構(gòu)在零速時有下滑或溜車的現(xiàn)象。為了避免這一現(xiàn)象,實(shí)際應(yīng)用中可采用加轉(zhuǎn)速偏置的方法,雖在一定程度上可解決這一問題,然而偏置量的過大或過小都會引起兩個機(jī)構(gòu)的緩慢上升或下滑。

采用直接轉(zhuǎn)矩控制技術(shù)則不會存在上述問題。一方面由于其采用基于定子磁場定向的電機(jī)模型,不需要測速傳感器檢測轉(zhuǎn)子的位置,對測速傳感器的依賴性不強(qiáng),即使沒有傳感器仍可以有很高的調(diào)速精度,可達(dá)額定轉(zhuǎn)速的依0.1%~0.5豫,故在零速附近仍可以維持滿轉(zhuǎn)矩的輸出,保證提升和推壓機(jī)構(gòu)實(shí)現(xiàn)零速懸停。另一方面,根據(jù)無速度傳感器的控制原理,定子磁鏈由電壓模型計(jì)算得出,轉(zhuǎn)子磁鏈追r為

由式(5)可知電機(jī)轉(zhuǎn)速精度與定子磁鏈的準(zhǔn)確性關(guān)系密切。由電壓模型得到的定子磁鏈在低速時受到定子電阻壓降的影響,估算的磁鏈值準(zhǔn)確性下降,因此得到的轉(zhuǎn)速精度也隨之下降。為此,在無速度傳感器的條件下,為了保證全速范圍內(nèi)轉(zhuǎn)速的估算精度,當(dāng)電機(jī)轉(zhuǎn)速小于額定轉(zhuǎn)速的10豫,負(fù)載轉(zhuǎn)矩大于額定轉(zhuǎn)矩的30豫時,ABB 變頻器ACS800 系列采用了FS-method(Flux Stabilizer)的控制策略,即高于額定轉(zhuǎn)速的10豫時采用基于電壓模型的轉(zhuǎn)速估算值,低于額定轉(zhuǎn)速的10豫時采用基于電流模型的轉(zhuǎn)速估算值,克服了低速下由電壓模型估算的轉(zhuǎn)速不準(zhǔn)確的缺陷,從而保證了電動機(jī)不僅在電動狀態(tài)而且在發(fā)電狀態(tài)都具有零速滿轉(zhuǎn)矩的特性,最大轉(zhuǎn)矩輸出可達(dá)額定轉(zhuǎn)矩的200豫。


上一頁 1 2 下一頁

關(guān)鍵詞: 傳感器 控制

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉