新聞中心

EEPW首頁(yè) > 智能計(jì)算 > 業(yè)界動(dòng)態(tài) > 我們真的永遠(yuǎn)也理解不了人工智能嗎?

我們真的永遠(yuǎn)也理解不了人工智能嗎?

作者: 時(shí)間:2018-07-30 來(lái)源:網(wǎng)絡(luò) 收藏

  美國(guó)科學(xué)雜志nautil.us《鸚鵡螺》作家Aaron M. Bornstein發(fā)表了針對(duì)時(shí)代下神經(jīng)網(wǎng)絡(luò)模型的深度報(bào)道。從語(yǔ)音識(shí)別到語(yǔ)言翻譯,從下圍棋的機(jī)器人到自動(dòng)駕駛汽車,各行各業(yè)都在該的驅(qū)動(dòng)下出現(xiàn)了新的突破。雖然現(xiàn)代神經(jīng)網(wǎng)絡(luò)的表現(xiàn)令人激動(dòng),但也面臨一個(gè)棘手的問(wèn)題:沒(méi)人理解它們的運(yùn)行機(jī)制,這也就意味著,沒(méi)人能預(yù)測(cè)它們何時(shí)可能失靈。正因?yàn)槿绱?,許多人遲疑不前、不敢對(duì)神秘莫測(cè)的神經(jīng)網(wǎng)絡(luò)下注。

本文引用地址:http://2s4d.com/article/201807/389720.htm


我們真的永遠(yuǎn)也理解不了人工智能嗎?


  在神經(jīng)網(wǎng)絡(luò)中,數(shù)據(jù)從一層傳遞到另一層,每一步都經(jīng)歷一些簡(jiǎn)單的轉(zhuǎn)變。在輸入層和輸出層之間還隱藏著若干層,以及眾多節(jié)點(diǎn)組和連接。其中往往找不出可被人類解讀的規(guī)律,與輸入或輸出也沒(méi)有明顯的聯(lián)系?!吧疃取本W(wǎng)絡(luò)便是隱藏層數(shù)量較多的神經(jīng)網(wǎng)絡(luò)

  以下為文章全文:

  作為IBM的一名研究科學(xué)家,迪米特里·馬里奧托夫其實(shí)不太說(shuō)得上來(lái)自己究竟打造了什么。他的部分工作內(nèi)容是打造機(jī)器學(xué)習(xí)系統(tǒng)、解決IBM公司客戶面臨的棘手問(wèn)題。例如,他曾為一家大型保險(xiǎn)公司編寫(xiě)了一套程序。這項(xiàng)任務(wù)極具挑戰(zhàn)性,要用到一套十分復(fù)雜的算法。在向客戶解釋項(xiàng)目結(jié)果時(shí),馬里奧托夫更是大傷腦筋。“我們沒(méi)辦法向他們解釋這套模型,因?yàn)樗麄儧](méi)受過(guò)機(jī)器學(xué)習(xí)方面的培訓(xùn)?!?/p>

  其實(shí),就算這些客戶都是機(jī)器學(xué)習(xí)專家,可能也于事無(wú)補(bǔ)。因?yàn)轳R里奧托夫打造的模型為人工神經(jīng)網(wǎng)絡(luò),要從特定類型的數(shù)據(jù)中尋找規(guī)律。在上文提到的例子中,這些數(shù)據(jù)就是保險(xiǎn)公司的客戶記錄。此類網(wǎng)絡(luò)投入實(shí)際應(yīng)用已有半個(gè)世紀(jì)之久,但近年來(lái)又有愈演愈烈之勢(shì)。從語(yǔ)音識(shí)別到語(yǔ)言翻譯,從下圍棋的機(jī)器人到自動(dòng)駕駛汽車,各行各業(yè)都在該技術(shù)的驅(qū)動(dòng)下出現(xiàn)了新的突破。

  雖然現(xiàn)代神經(jīng)網(wǎng)絡(luò)的表現(xiàn)令人激動(dòng),但也面臨一個(gè)棘手的問(wèn)題:沒(méi)人理解它們的運(yùn)行機(jī)制,這也就意味著,沒(méi)人能預(yù)測(cè)它們何時(shí)可能失靈。

  以機(jī)器學(xué)習(xí)專家里奇·卡魯阿納和同事們前幾年報(bào)告的一起事件為例:匹茲堡大學(xué)醫(yī)學(xué)中心的一支研究團(tuán)隊(duì)曾利用機(jī)器學(xué)習(xí)技術(shù)預(yù)測(cè)肺炎患者是否會(huì)出現(xiàn)嚴(yán)重并發(fā)癥。他們希望將并發(fā)癥風(fēng)險(xiǎn)較低的患者轉(zhuǎn)移到門(mén)診進(jìn)行治療,好騰出更多床位和人手。該團(tuán)隊(duì)試了幾種不同的方法,包括各種各樣的神經(jīng)網(wǎng)絡(luò),以及由軟件生成的決策樹(shù),后者可總結(jié)出清晰易懂、能被人類理解的規(guī)則。


我們真的永遠(yuǎn)也理解不了人工智能嗎?


  在現(xiàn)代機(jī)器學(xué)習(xí)算法中,可解釋性與精確度難以兩全其美。深度學(xué)習(xí)精確度最高,同時(shí)可解釋性最低

  神經(jīng)網(wǎng)絡(luò)的正確率比其它方法都要高。但當(dāng)研究人員和醫(yī)生們分析決策樹(shù)提出的規(guī)則時(shí),卻發(fā)現(xiàn)了一些令人不安的結(jié)果:按照其中一條規(guī)則,醫(yī)生應(yīng)當(dāng)讓已患有哮喘的肺炎病人出院,而醫(yī)生們都知道,哮喘患者極易出現(xiàn)并發(fā)癥。

  這套模型完全遵從了指令:

  從數(shù)據(jù)中找出規(guī)律。它之所以給出了如此差勁的建議,其實(shí)是由數(shù)據(jù)中的一個(gè)巧合導(dǎo)致的。按照醫(yī)院政策,身患哮喘的肺炎患者需接受強(qiáng)化護(hù)理。而這項(xiàng)政策效果極佳,哮喘患者幾乎從不會(huì)產(chǎn)生嚴(yán)重并發(fā)癥。由于這些額外護(hù)理改變了該醫(yī)院的患者記錄,算法預(yù)測(cè)的結(jié)果也就截然不同了。

  這項(xiàng)研究充分體現(xiàn)了算法“可解釋性”的價(jià)值所在??敯⒓{解釋道:“如果這套以規(guī)則為基礎(chǔ)的系統(tǒng)學(xué)到了‘哮喘會(huì)降低并發(fā)癥風(fēng)險(xiǎn)’這一規(guī)則,神經(jīng)網(wǎng)絡(luò)自然也會(huì)學(xué)到這一點(diǎn)?!钡祟愖x不懂神經(jīng)網(wǎng)絡(luò),因此很難預(yù)知其結(jié)果。馬里奧托夫指出,若不是有一套可解釋的模型,“這套系統(tǒng)可能真的會(huì)害死人?!?/p>

  正因?yàn)槿绱?,許多人遲疑不前、不敢對(duì)神秘莫測(cè)的神經(jīng)網(wǎng)絡(luò)下注。馬里奧托夫?yàn)榭蛻籼峁┝藘商啄P停阂惶资巧窠?jīng)網(wǎng)絡(luò)模型,雖然精確,但難以理解;另一套則是以規(guī)則為基礎(chǔ)的模型,能夠用大白話向客戶解釋運(yùn)作原理。盡管保險(xiǎn)公司對(duì)精確度要求極高,每個(gè)百分點(diǎn)都十分重要,但客戶仍選擇了精確度稍遜的第二套模型?!八麄冇X(jué)得第二套模型更容易理解,”馬里奧托夫表示,“他們非??粗刂庇^性?!?/p>

  隨著神秘難解的神經(jīng)網(wǎng)絡(luò)影響力與日俱增,就連政府都開(kāi)始對(duì)其表示關(guān)注。歐盟兩年前提出,應(yīng)給予公民“要求解釋”的權(quán)利,算法決策需公開(kāi)透明。但這項(xiàng)立法或許難以實(shí)施,因?yàn)榱⒎ㄕ卟⑽搓U明“透明”的含義。也不清楚這一省略是由于立法者忽略了這一問(wèn)題、還是覺(jué)得其太過(guò)復(fù)雜導(dǎo)致。

  事實(shí)上,有些人認(rèn)為這個(gè)詞根本無(wú)法定義。目前我們雖然知道神經(jīng)網(wǎng)絡(luò)在做什么(畢竟它們歸根到底只是電腦程序),但我們對(duì)“怎么做、為何做”幾乎一無(wú)所知。神經(jīng)網(wǎng)絡(luò)由成百上千萬(wàn)的獨(dú)立單位、即神經(jīng)元構(gòu)成。每個(gè)神經(jīng)元都可將大量數(shù)字輸入轉(zhuǎn)化為單個(gè)數(shù)字輸出,再傳遞給另一個(gè)、或多個(gè)神經(jīng)元。就像在人腦中一樣,這些神經(jīng)元也分成若干“層”。一組細(xì)胞接收下一層細(xì)胞的輸入,再將輸出結(jié)果傳遞給上一層。


我們真的永遠(yuǎn)也理解不了人工智能嗎?


  神經(jīng)網(wǎng)絡(luò)可通過(guò)輸入大量數(shù)據(jù)進(jìn)行訓(xùn)練,同時(shí)不斷調(diào)整各層之間的聯(lián)系,直到該網(wǎng)絡(luò)計(jì)算后輸出的結(jié)果盡可能接近已知結(jié)果(通常分為若干類別)。近年來(lái)該領(lǐng)域之所以發(fā)展迅猛,還要?dú)w功于幾項(xiàng)可快速訓(xùn)練深度網(wǎng)絡(luò)的新技術(shù)。在深度網(wǎng)絡(luò)中,初始輸入和最終輸出之間相隔多層。有一套叫AlexNet的著名深度網(wǎng)絡(luò),可對(duì)照片進(jìn)行歸類,根據(jù)照片的細(xì)微差別將其劃入不同類別。該網(wǎng)絡(luò)含有超過(guò)6000萬(wàn)個(gè)“權(quán)重”,根據(jù)不同權(quán)重,神經(jīng)元會(huì)對(duì)每項(xiàng)輸入給予不同程度的關(guān)注。隸屬于康奈爾大學(xué)和AI初創(chuàng)公司Geometric Intelligence的計(jì)算機(jī)科學(xué)家杰森·尤辛斯基指出:“要想理解這個(gè)神經(jīng)網(wǎng)絡(luò),你就要對(duì)這6000萬(wàn)個(gè)權(quán)重都有一定的了解?!?/p>

  而就算能夠?qū)崿F(xiàn)這種可解讀性,也未必是件好事。對(duì)可解讀性的要求相當(dāng)于制約了系統(tǒng)的能力,使模型無(wú)法僅關(guān)注輸入輸出數(shù)據(jù)、提供“純粹”的解決方案,從而有降低精確度之嫌。美國(guó)國(guó)防部高級(jí)研究計(jì)劃局項(xiàng)目主管戴維·甘寧曾在一次會(huì)議上對(duì)此進(jìn)行了總結(jié)。在他展示的圖表中,深度神經(jīng)網(wǎng)絡(luò)是現(xiàn)代機(jī)器學(xué)習(xí)方法中最難以理解的一種,而以規(guī)則為基礎(chǔ)、重視可解釋性勝過(guò)效率的決策樹(shù)則是最容易理解的一種。

  現(xiàn)代機(jī)器學(xué)習(xí)技術(shù)為開(kāi)發(fā)者提供了不同的選擇:究竟是要精確獲知結(jié)果,還是要以犧牲精確度為代價(jià)、了解出現(xiàn)該結(jié)果的原因?“了解原因”可幫助我們制定策略、做出適應(yīng)、并預(yù)測(cè)模型何時(shí)可能失靈。而“獲知結(jié)果”則能幫助我們即刻采取恰當(dāng)行動(dòng)。


我們真的永遠(yuǎn)也理解不了人工智能嗎?


  這實(shí)在令人左右為難。但一些研究人員提出,如果既能保留深度網(wǎng)絡(luò)的多層構(gòu)造、又能理解其運(yùn)作原理,豈不是最好?令人驚奇的是,一些最受看好的研究所其實(shí)是將神經(jīng)網(wǎng)絡(luò)作為實(shí)驗(yàn)對(duì)象看待的,即沿襲生物科學(xué)的思路,而不是將其視作純數(shù)學(xué)的研究對(duì)象。尤辛斯基也表示,他試圖“通過(guò)我們了解動(dòng)物、甚至人類的方式來(lái)了解深度網(wǎng)絡(luò)?!彼推渌?jì)算機(jī)科學(xué)家借鑒了生物研究技術(shù),借神經(jīng)科學(xué)家研究人腦的方式研究神經(jīng)網(wǎng)絡(luò):對(duì)各個(gè)部件展開(kāi)詳細(xì)分析,記錄各部件內(nèi)部對(duì)微小輸入變化的反應(yīng),甚至還會(huì)移除某些部分、觀察其余部分如何進(jìn)行彌補(bǔ)。

  在從無(wú)到有地打造了一種新型智能之后,科學(xué)家如今又將其拆開(kāi),用數(shù)字形式的“顯微鏡”和“手術(shù)刀”對(duì)這些“虛擬器官”展開(kāi)分析。

  尤辛斯基坐在一臺(tái)電腦前、對(duì)著網(wǎng)絡(luò)攝像頭說(shuō)話。攝像頭接收的數(shù)據(jù)被輸入深度神經(jīng)網(wǎng)絡(luò),而與此同時(shí),該網(wǎng)絡(luò)也在由尤辛斯基和同事們開(kāi)發(fā)的Deep Visualization(深度可視化)軟件工具包進(jìn)行分析。尤辛斯基在幾個(gè)屏幕間來(lái)回切換,然后將網(wǎng)絡(luò)中的一個(gè)神經(jīng)元放大?!斑@個(gè)神經(jīng)元似乎能夠?qū)γ娌繄D像做出反應(yīng)。”人腦中也有這種神經(jīng)元,其中多數(shù)都集中在一處名為“梭狀臉區(qū)”的腦區(qū)中。該腦區(qū)最早由1992年開(kāi)始的一系列研究發(fā)現(xiàn),被視作人類神經(jīng)科學(xué)最可靠的觀察結(jié)果之一。對(duì)腦區(qū)的研究還需借助正電子發(fā)射計(jì)算機(jī)斷層掃描等先進(jìn)技術(shù),但尤辛斯基只需憑借代碼、便可對(duì)人造神經(jīng)元展開(kāi)詳細(xì)分析。

  借助該方法,尤辛斯基可將特定的人造神經(jīng)元與人類能理解的概念或物體(如人臉)建立起映射關(guān)系,從而將神經(jīng)網(wǎng)絡(luò)變?yōu)橛辛ぞ?。該研究還挑明了圖片中最容易激發(fā)面部神經(jīng)元反映的特征。“眼睛顏色越深、嘴唇越紅,神經(jīng)元的反應(yīng)就更為強(qiáng)烈?!?/p>

  杜克大學(xué)計(jì)算機(jī)科學(xué)、電子與計(jì)算機(jī)工程教授辛西婭·魯丁認(rèn)為,這些“事后解讀”本身是有問(wèn)題的。她的研究重點(diǎn)為以規(guī)則為基礎(chǔ)的機(jī)器學(xué)習(xí)系統(tǒng),可應(yīng)用于罪犯量刑、醫(yī)療診斷等領(lǐng)域。在這些領(lǐng)域中,人類能夠進(jìn)行解讀,且人類的解讀十分關(guān)鍵。但在視覺(jué)成像等領(lǐng)域,“個(gè)人的解讀結(jié)果純屬主觀?!闭\(chéng)然,我們可以通過(guò)識(shí)別面部神經(jīng)元、對(duì)神經(jīng)網(wǎng)絡(luò)的響應(yīng)進(jìn)行簡(jiǎn)化,但如何才能確定這就是該網(wǎng)絡(luò)尋找的結(jié)果呢?無(wú)獨(dú)有偶,有一套著名理論認(rèn)為,不存在比人類視覺(jué)系統(tǒng)更簡(jiǎn)單的視覺(jué)系統(tǒng)模型?!皩?duì)于一個(gè)復(fù)雜系統(tǒng)在做什么事情,可以有很多種解釋,”魯丁指出,“難道從中選出一個(gè)你‘希望’正確的解釋就行了嗎?”

  尤辛斯基的工具包可以通過(guò)逆向工程的方式、找出神經(jīng)網(wǎng)絡(luò)自身“希望”正確的結(jié)果,從而在部分程度上解決上述問(wèn)題。該項(xiàng)目先從毫無(wú)意義的“雪花”圖像開(kāi)始,然后對(duì)像素進(jìn)行逐個(gè)調(diào)整,通過(guò)神經(jīng)網(wǎng)絡(luò)訓(xùn)練的反向過(guò)程逐步修改圖片,最終找出能夠最大限度激發(fā)某個(gè)神經(jīng)元響應(yīng)的圖片。將該方法運(yùn)用到AlexNet神經(jīng)元上后,該系統(tǒng)生成了一些奇奇怪怪的照片,雖然看上去頗為詭異,但的確能看出屬于它們被標(biāo)記的類別。


上一頁(yè) 1 2 下一頁(yè)

關(guān)鍵詞: 人工智能

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉