新聞中心

EEPW首頁 > 元件/連接器 > 設計應用 > 手把手帶你認識鋰離子電池

手把手帶你認識鋰離子電池

作者: 時間:2017-10-28 來源:網(wǎng)絡 收藏

  一、前言

本文引用地址:http://2s4d.com/article/201710/369039.htm

  這里所說的特指可反復充電的二次,而不是用完就扔的一次電池。

  分布在我們生活的每一個角落,其應用領域包括手機、平板電腦、筆記本電腦、智能手表、移動電源(充電寶)、應急電源、剃須刀、電動自行車、電動汽車、電動公交車、旅游觀光車、無人機,以及其他各類電動工具。作為電能的載體和眾多設備的動力來源,可以說,離開了鋰離子電池,當今的物質(zhì)世界就玩不轉了(除非我們想倒退回幾十年前)。那么,鋰離子電池到底是什么鬼?

  本文不科普電池的基本原理和發(fā)展歷史,有興趣的請百度查詢,這里頭有很多故事。物理學和化學領域的基礎理論,被愛因斯坦之前的那一波人基本上搞得七七八八了,電池跟這兩個領域直接相關,與電池有關的理論,在二戰(zhàn)之前就已經(jīng)研究的差不多了,二戰(zhàn)以后并無大的創(chuàng)新。作為電池技術的一種,鋰離子電池的相關理論研究,近年來也沒有什么突破性進展,大多數(shù)研究都集中在材料、配方、工藝等方面,也就是如何提高產(chǎn)業(yè)化的程度,研究出性能更優(yōu)異的鋰離子電池(存儲能量更多,用的更久)。

  

  很多人在使用鋰離子電池,很多人在研究鋰離子電池的產(chǎn)品應用(如上面提到的產(chǎn)品),可是大多數(shù)人對鋰離子電池知之甚少,或者總是霧里看花,不得要領。寫本文的目的,不是為了給做鋰離子電池研發(fā)的人看的,而是給那些在產(chǎn)品里面用到鋰離子電池的工程技術人員或者鋰離子電池的使用者看的。所以本文力求通俗易懂,盡量不使用專業(yè)化的術語和公式,希望在輕松閱讀之余,能夠提升大家對鋰離子電池的認識,起到答疑解惑的作用。

  作者本人不是鋰離子電池領域的專家,沒有從事過鋰離子電池單體的技術或產(chǎn)品研發(fā),但曾長期從事鋰離子電池的應用技術研究,因此希望站在“用戶”的角度,來闡述我對鋰離子電池的認識。普通用戶,通常把鋰離子電池直接叫作鋰電池,雖然兩者并不完全等同,但鋰離子電池確實是當前鋰電池的絕對主體。

  文中大部分的內(nèi)容,都不是本人的原創(chuàng),而是已經(jīng)存在的知識,站在巨人的肩膀上,我們要做的僅僅是站直身體,抬起頭,世界就在我們眼前。

  二、鋰離子電池的基本原理

  1.如何選擇能量的載體

  首先大家會問,為什么選擇鋰元素作為能量載體?

  好吧,雖然我們不想去回顧化學的知識,可是這個問題必須得去元素周期表找答案,好在,大家總還記得元素周期表吧?!實在不記得,我們就花一分鐘來看看下面的表吧。

  

  要想成為好的能量載體,就要以盡可能小的體積和重量,存儲和搬運更多的能量。因此,需要滿足下面幾個基本條件:

  1)原子相對質(zhì)量要小

  2)得失電子能力要強

  3)電子轉移比例要高

  基于這3項基本原則,元素周期表上面的元素比下面的元素要好,左邊的元素比右邊的元素要好。初步篩選,我們只能在元素周期表的第一周期和第二周期里面去找材料:氫、氦、鋰、鈹、硼、碳、氮、氧、氟、氖。排除惰性氣體和氧化劑,只剩下氫、鋰、鈹、硼、碳,這5個元素。

  氫元素是自然界最好的能量載體,所以氫燃料電池的研究一直方興未艾,代表了電池領域一個非常有前途的方向。當然,如果核裂變技術在未來幾十年能夠取得重大突破,可以做到小型化甚至微型化,那么便攜式的核燃料電池將會有廣闊的發(fā)展空間。

  接下來就是鋰了,選擇鋰元素來做電池,是基于地球當前的所有元素中,我們能夠找到的相對優(yōu)解(鈹?shù)膬α刻倭?,是稀有金屬中的稀有金屬)。氫燃料電池與鋰離子電池的技術路線之爭,在電動汽車領域打的如火如荼,大概就是因為這兩種元素,是我們目前能夠找到的比較好的能量載體。當然,這里面還牽涉到很多的商業(yè)利益,甚至政治博弈,這些不是本文要討論的范疇。

  順便說一下,自然界中已經(jīng)存在的,并為人類廣泛使用的能源,比如石油、天然氣、煤炭等,其主要成分也是碳、氫、氧等元素(在元素周期表的第一周期和第二周期)。所以不管是自然的選擇,還是人類的“設計”,最終都是殊途同歸的。

  2.鋰離子電池的工作原理

  下面講講鋰離子電池的工作機理。這里不闡述氧化還原反應,化學基礎不好的,或者已經(jīng)把化學知識還給老師的人,看到這些專業(yè)的東西就會頭暈,所以我們還是搞點直白的描述。這里借用一張圖,這張圖比較容易讓人理解鋰離子電池的原理。

  

  我們按照使用的習慣,根據(jù)充放電時的電壓差區(qū)分正極(+)和負極(-),這里不講陽極和陰極,費時費力。這張圖上,電池的正極材料是鈷酸鋰(LiCoO2),負極材料是石墨(C)。

  充電的時候,在外加電場的影響下,正極材料LiCoO2分子里面的鋰元素脫離出來,變成帶正電荷的鋰離子(Li+),在電場力的作用下,從正極移動到負極,與負極的碳原子發(fā)生化學反應,生成LiC6,于是從正極跑出來的鋰離子就很“穩(wěn)定”的嵌入到負極的石墨層狀結構當中。從正極跑出來轉移到負極的鋰離子越多,這個電池可以存儲的能量就越多。

  放電的時候剛好相反,內(nèi)部電場轉向,鋰離子(Li+)從負極脫離出來,順著電場的方向,又跑回到正極,重新變成鈷酸鋰分子(LiCoO2)。從負極跑出來轉移到正極的鋰離子越多,這個電池可以釋放的能量就越多。

  在每一次充放電循環(huán)過程中,鋰離子(Li+)充當了電能的搬運載體,周而復始的從正極→負極→正極來回的移動,與正、負極材料發(fā)生化學反應,將化學能和電能相互轉換,實現(xiàn)了電荷的轉移,這就是“鋰離子電池”的基本原理。由于電解質(zhì)、隔離膜等都是電子的絕緣體,所以這個循環(huán)過程中,并沒有電子在正負極之間的來回移動,它們只參與電極的化學反應。

  3.鋰離子電池的基本構成

  要實現(xiàn)上述的功能,鋰離子電池內(nèi)部需要包含幾種基本材料:正極活性物質(zhì)、負極活性物質(zhì)、隔離膜、電解質(zhì)。下面做簡單論述,這些材料都是干嘛的。

  正負極不難理解,要實現(xiàn)電荷移動,就需要存在電位差的正負極材料,那么什么是活性物質(zhì)?我們知道,電池實際上是將電能和化學能相互轉換,以實現(xiàn)能量的存儲和釋放。要實現(xiàn)這個過程,就需要正負極的材料很“容易”參與化學反應,要活潑,要容易氧化和還原,從而實現(xiàn)能量轉換,所以我們需要“活性物質(zhì)”來做電池的正負極。

  上面已經(jīng)提到,鋰元素是我們做電池的優(yōu)選材料,那么為什么不用金屬鋰來做電極的活性物質(zhì)呢?這樣不是可以達到最大的能量密度嗎?

  我們再看上面這張圖,氧(O)、鈷(Co)、鋰(Li)三種元素構成了非常穩(wěn)定的正極材料結構(圖中的比例和排列僅作參考),負極石墨的碳原子排列也具有非常穩(wěn)定的層狀結構。正負極材料不但要活潑,還要具有非常穩(wěn)定的結構,才能實現(xiàn)有序的,可控的化學反應。不穩(wěn)定的結果是什么?想想汽油燃燒和炸彈爆炸,能量劇烈釋放,這個化學反應的過程實際上是無法人為去精確控制的,于是化學能變成了熱能,一次性把能量釋放完畢,而且不可逆。

  

  金屬形態(tài)存在的鋰元素太“活潑”了,調(diào)皮的孩子多半都不聽話,喜歡搞破壞。早期針對鋰電池的研究,確實是集中以金屬鋰或其合金作為負極這個方向,但是因為安全問題突出,不得不尋找其他更好的路徑。近年來,隨著人們對能量密度的追求,這個研究方向又有“滿血復活”的趨勢,這個我們后面會講到。

  為了實現(xiàn)能量存儲和釋放過程中的化學穩(wěn)定性,即電池充放電循環(huán)的安全性和長壽命,我們需要一種電極材料,在需要活潑的時候活潑,在需要穩(wěn)定的時候穩(wěn)定。經(jīng)過長期的研究和探索,人們找到了幾種鋰的金屬氧化物,如鈷酸鋰、鈦酸鋰、磷酸鐵鋰、錳酸鋰、鎳鈷錳三元等材料,作為電池正極或負極的活性物質(zhì),解決了上述問題。如上圖所示,磷酸鐵鋰的橄欖石結構也是一種非常穩(wěn)定的正極材料結構,充放電過程中鋰離子的脫嵌,并不會造成晶格坍塌。題外話,鋰金屬電池確實是有的,但與鋰離子電池相比,幾乎可以忽略不計,技術的發(fā)展,最終還是要服務于市場。

  當然,在解決了穩(wěn)定性問題的同時,也帶來了嚴重的“副作用”,就是作為能量載體的鋰元素占比大大降低,能量密度降了不止一個數(shù)量級,有得必有失,自然之道啊。

  負極通常選擇石墨或其他碳材料做活性物質(zhì),也是遵循上述的原則,既要求是好的能量載體,又要相對穩(wěn)定,還要有相對豐富的儲量,便于大規(guī)模制造,找來找去,碳元素就是一個相對優(yōu)解。當然,這并不是唯一解,針對負極材料的研究很廣泛,后面有論述。

  電解質(zhì)是干嘛的?通俗的講,就是游泳池里面的“水”,讓鋰離子能夠自由的游來游去,所以呢,離子電導率要高(游泳的阻力?。?,電子電導率要?。ń^緣),化學穩(wěn)定性要好(穩(wěn)定壓倒一切?。?,熱穩(wěn)定性要好(都是為了安全),電位窗口要寬?;谶@些原則,經(jīng)過長期的工程探索,人們找到了由高純度的有機溶劑、電解質(zhì)鋰鹽、和必要的添加劑等原料,在一定條件下、按一定比例配制而成的電解質(zhì)。有機溶劑有PC(碳酸丙烯酯),EC(碳酸乙烯酯),DMC(碳酸二甲酯),DEC(碳酸二乙酯),EMC(碳酸甲乙酯)等材料。電解質(zhì)鋰鹽有LiPF6,LiBF4等材料。

  隔離膜則是為了阻止正負極材料直接接觸而加進來的,我們希望把電池做的盡可能的小,存儲的能量盡可能的多,于是正負極之間的距離越來越小,短路成為一個巨大的風險。為了防止正負極材料短路,造成能量的劇烈釋放,就需要用一種材料將正負極“隔離”開來,這就是隔離膜的由來。隔離膜需要具有良好的離子通過性,主要是給鋰離子開放通道,讓其可以自由通過,同時又是電子的絕緣體,以實現(xiàn)正負極之間的絕緣。目前市場上的隔膜主要有單層PP,單層PE,雙層PP/PE,三層PP/PE/PP復合膜等。

  4.鋰離子電池的完整材料構成

  除了上面提到的4種主要材料之外,要想把鋰離子電池從實驗室的一個“實驗品”變成一個可以商業(yè)化應用的產(chǎn)品,還需要其他一些不可或缺的材料。

  

  

  我們先看電池的正極,除了活性物質(zhì)之外,還有導電劑和粘結劑,以及用作電流載體的基體和集流體(正極通常是鋁箔)。粘結劑要把作為活性物質(zhì)的鋰金屬氧化物均勻的“固定”在正極基帶上面,導電劑則要增強活性物質(zhì)與基體的電導率,以達到更大的充放電電流,集流體負責充當電池內(nèi)外部的電荷轉移橋梁。

  

  負極的構造與正極基本相同,需要粘結劑來固定活性物質(zhì)石墨,需要銅箔作為基體和集流體來充當電流的導體,但因為石墨本身良好的導電性,所以負極一般不添加導電劑材料。

  除了以上材料外,一個完整的鋰離子電池還包括絕緣片、蓋板、泄壓閥、殼體(鋁,鋼,復合膜等),以及其他一些輔助材料。

  5.鋰離子電池的制作工藝

  鋰離子電池的制作工藝比較復雜,此處僅就部分關鍵工序做簡單描述。根據(jù)極片裝配方式的不同,通常有卷繞和疊片兩種工藝路線。

  疊片工藝是將正極、負極切成小片與隔離膜疊合成小電芯單體,然后將小電芯單體疊放并聯(lián)起來,組成一個大電芯的制造工藝,其大體工藝流程如下:

  

  

  卷繞工藝是將正負極片、隔離膜、正負極耳、保護膠帶、終止膠帶等物料固定在設備上,設備經(jīng)過放卷完成電芯制作。

  

  

  鋰離子電池的常見外形主要有圓柱形和方形,根據(jù)殼體材料不同,又有金屬外殼和軟包外殼等。

  
鋰離子電池的主要參數(shù)指標#e#

  三、 主要參數(shù)指標

  鋰離子電池具有能量密度高、轉換效率高、循環(huán)壽命長、無記憶效應、無充放電延時、自放電率低、工作溫度范圍寬和環(huán)境友好等優(yōu)點,因而成為電能的一個比較理想的載體,在各個領域得到廣泛的應用。

  一般而言,我們在使用鋰離子電池的時候,會關注一些技術指標,作為衡量其性能“優(yōu)劣”的主要因素。那么,哪些指標是我們需要在使用的時候,應該予以特別關注呢?

  1. 容量

  這是大家比較關心的一個參數(shù)。智能手機早已普及,我們在使用智能手機的時候,最為擔心的就是電量不足,需要頻繁充電,有時還找不到地方充電。早期的功能機,正常使用情況下,滿充的電池可以待機3~5天,一些產(chǎn)品甚至可以待機7天以上。可是到了智能機時代,待機時間就顯得慘不忍睹了。這里面很重要的一個原因,就是手機的功耗越來越大,而電池的容量卻沒有同比例的增長。

  

  容量的單位一般為“mAh”(毫安時)或“Ah”(安時),在使用時又有額定容量和實際容量的區(qū)別。額定容量是指滿充的鋰離子電池在實驗室條件下(比較理想的溫濕度環(huán)境),以某一特定的放電倍率(C-rate)放電到截止電壓時,所能夠提供的總的電量。實際容量一般都不等于額定容量,它與溫度、濕度、充放電倍率等直接相關。一般情況下,實際容量比額定容量偏小一些,有時甚至比額定容量小很多,比如北方的冬季,如果在室外使用手機,電池容量會迅速下降。

  2. 能量密度

  能量密度,指的是單位體積或單位重量的電池,能夠存儲和釋放的電量,其單位有兩種:Wh/kg,Wh/L,分別代表重量比能量和體積比能量。這里的電量,是上面提到的容量(Ah)與工作電壓(V)的積分。在應用的時候,能量密度這個指標比容量更具有指導性意義。

  

  基于當前的鋰離子電池技術,能夠達到的能量密度水平大約在100~200Wh/kg,這一數(shù)值還是比較低的,在許多場合都成為鋰離子電池應用的瓶頸。這一問題同樣出現(xiàn)在電動汽車領域,在體積和重量都受到嚴格限制的情況下,電池的能量密度決定了電動汽車的單次最大行駛里程,于是出現(xiàn)了“里程焦慮癥”這一特有的名詞。如果要使得電動汽車的單次行駛里程達到500公里(與傳統(tǒng)燃油車相當),電池單體的能量密度必須達到300Wh/kg以上。

  鋰離子電池能量密度的提升,是一個緩慢的過程,遠低于集成電路產(chǎn)業(yè)的摩爾定律,這就造成了電子產(chǎn)品的性能提升與電池的能量密度提升之間存在一個剪刀差,并且隨著時間不斷擴大。

  3. 充放電倍率

  這個指標會影響鋰離子電池工作時的連續(xù)電流和峰值電流,其單位一般為 C(C-rate的簡寫),如1/10C,1/5C,1C,5C,10C等。舉個例子來闡述倍率指標的具體含義,某電池的額定容量是10Ah,如果其額定充放電倍率是1C,那么就意味著這個型號的電池,可以以10A的電流,進行反復的充放電,一直到充電或放電的截止電壓。如果其最大放電倍率是 10C@10s,最大充電倍率5C@10s,那么該電池可以以100A的電流進行持續(xù)10秒的放電,以50A的電流進行持續(xù)10秒的充電。

  充放電倍率對應的電流值乘以工作電壓,就可以得出鋰離子電池的連續(xù)功率和峰值功率指標。充放電倍率指標定義的越詳細,對于使用時的指導意義越大。尤其是作為電動交通工具動力源的鋰離子電池,需要規(guī)定不同溫度條件下的連續(xù)和脈沖倍率指標,以確保鋰離子電池使用在合理的范圍之內(nèi)。

  4. 電壓

  鋰離子電池的電壓,有開路電壓、工作電壓、充電截止電壓、放電截止電壓等一些參數(shù),本文不再分開一一論述,而是集中做個解釋。

  開路電壓,顧名思義,就是電池外部不接任何負載或電源,測量電池正負極之間的電位差,此即為電池的開路電壓。

  

  工作電壓,就是電池外接負載或電源,處在工作狀態(tài),有電流流過時,測量所得的正負極之間的電位差。一般來說,由于電池內(nèi)阻的存在,放電狀態(tài)時的工作電壓低于開路電壓,充電時的工作電壓高于開路電壓。

  充/放電截止電壓,是指電池允許達到的最高和最低工作電壓。超過了這一限值,會對電池產(chǎn)生一些不可逆的損害,導致電池性能的降低,嚴重時甚至造成起火、爆炸等安全事故。

  電池的開路電壓和工作電壓,與電池的容量存在一定的對應關系。

  5. 壽命

  鋰離子電池的壽命會隨著使用和存儲而逐步衰減,并且會有較為明顯的表現(xiàn)。仍然以智能手機為例,使用過一段時間的手機,可以很明顯的感覺到手機電池“不耐用”了,剛開始可能一天只充一次,后面可能需要一天充電兩次,這就是電池壽命不斷衰減的體現(xiàn)。

  鋰離子電池的壽命分為循環(huán)壽命和日歷壽命兩個參數(shù)。循環(huán)壽命一般以次數(shù)為單位,表征電池可以循環(huán)充放電的次數(shù)。當然這里也是有條件的,一般是在理想的溫濕度下,以額定的充放電電流進行深度的充放電(100% DOD或者80%DOD),計算電池容量衰減到額定容量的80%時,所經(jīng)歷的循環(huán)次數(shù)。

  

  日歷壽命的定義則比較復雜,電池不可能一直在充放電,有存儲和擱置,也不可能一直處于理想環(huán)境條件,會經(jīng)歷各種溫濕度條件,充放電的倍率也是時刻在變化的,所以實際的使用壽命就需要模擬和測試。簡單的說,日歷壽命就是電池在使用環(huán)境條件下,經(jīng)過特定的使用工況,達到壽命終止條件(比如容量衰減到80%) 的時間跨度。日歷壽命與具體的使用要求是緊密結合的,通常需要規(guī)定具體的使用工況,環(huán)境條件,存儲間隔等。

  日歷壽命比循環(huán)壽命更具有實際意義,但由于日歷壽命的測算非常復雜,而且耗時太長,所以一般電池廠家只給出循環(huán)壽命的數(shù)據(jù)。如需要獲得日歷壽命的數(shù)據(jù),通常要額外付費,且要等待很長時間。

  6. 內(nèi)阻

  鋰離子電池的內(nèi)阻是指電池在工作時,電流流過電池內(nèi)部所受到的阻力,它包括歐姆內(nèi)阻和極化內(nèi)阻,極化內(nèi)阻又包括電化學極化內(nèi)阻和濃差極化內(nèi)阻。

  歐姆內(nèi)阻由電極材料、電解質(zhì)、隔膜電阻及各部分零件的接觸電阻組成。極化內(nèi)阻是指電化學反應時由極化引起的電阻,包括電化學極極化和濃差極化引起的電阻。

  內(nèi)阻的單位一般是毫歐姆(mΩ),內(nèi)阻大的電池,在充放電的時候,內(nèi)部功耗大,發(fā)熱嚴重,會造成鋰離子電池的加速老化和壽命衰減,同時也會限制大倍率的充放電應用。所以,內(nèi)阻做的越小,鋰離子電池的壽命和倍率性能就會越好。

  7. 自放電

  電池在放置的時候,其容量是在不斷下降的,容量下降的速率稱為自放電率,通常以百分數(shù)表示:%/月。

  自放電是我們不希望看到的,一個充滿電的電池,放個幾個月,電量就會少很多,所以我們希望鋰離子電池的自放電率越低越好。

  這里需要特別注意,一旦鋰離子電池的自放電導致電池過放,其造成的影響通常是不可逆的,即使再充電,電池的可用容量也會有很大損失,壽命會快速衰減。所以長期放置不用的鋰離子電池,一定要記得定期充電,避免因為自放電導致過放,性能受到很大影響。

  8. 工作溫度范圍

  由于鋰離子電池內(nèi)部化學材料的特性,鋰離子電池有一個合理的工作溫度范圍(常見的數(shù)據(jù)在-40℃~60℃之間),如果超出了合理的范圍使用,會對鋰離子電池的性能造成較大的影響。

  

  不同材料的鋰離子電池,其工作溫度范圍也是不一樣的,有些具有良好的高溫性能,有些則能夠適應低溫條件。鋰離子電池的工作電壓、容量、充放電倍率等參數(shù)都會隨著溫度的變化而發(fā)生非常顯著的變化。長時間的高溫或低溫使用,也會使得鋰離子電池的壽命加速衰減。因此,努力創(chuàng)造一個適宜的工作溫度范圍,才能夠最大限度的提升鋰離子電池的性能。

  除了工作溫度有限制之外,鋰離子電池的存儲溫度也是有嚴格約束的,長期高溫或低溫存儲,都會對電池性能造成不可逆的影響。

  四、 鋰離子電池的正負極材料

  我們經(jīng)常會看到磷酸鐵鋰,三元等專業(yè)的鋰離子電池術語,這些都是根據(jù)鋰離子電池正極材料來區(qū)分鋰離子電池的類型。相對來講,鋰離子電池的正、負極材料對電池性能的影響比較大,是大家比較關心的方面。那么,當前市場上都有哪些常見的正負極材料呢?用他們做鋰離子電池,又有哪些優(yōu)缺點?

  1. 正極材料

  首先,我們來看看正極材料,正極材料的選擇,主要基于以下幾個因素考慮:

  1) 具有較高的氧化還原反應電位,使鋰離子電池達到較高的輸出電壓;

  2) 鋰元素含量高,材料堆積密度高,使得鋰離子電池具有較高的能量密度;

  3) 化學反應過程中的結構穩(wěn)定性要好,使得鋰離子電池具有長循環(huán)壽命;

  4) 電導率要高,使得鋰離子電池具有良好的充放電倍率性能;

  5) 化學穩(wěn)定性和熱穩(wěn)定性要好,不易分解和發(fā)熱,使得鋰離子電池具有良好的安全性;

  6) 價格便宜,使得鋰離子電池的成本足夠低;

  7) 制造工藝相對簡單,便于大規(guī)模生產(chǎn);

  8) 對環(huán)境的污染低,易于回收利用。

  當前,鋰離子電池的能量密度、充放電倍率、安全性等一些關鍵指標,主要受制于正極材料。

  基于這些因素考慮,經(jīng)過工程研究和市場化檢驗,目前市場常見的正極材料如下表所示:

  

  鈷酸鋰的商業(yè)化應用走的最早,第一代商業(yè)化應用的鋰離子電池就是SONY在1990年推向市場的鈷酸鋰離子電池,隨后在消費類產(chǎn)品中得到大規(guī)模應用。隨著手機、筆記本、平板電腦的大規(guī)模普及,鈷酸鋰一度是鋰離子電池正極材料中銷售量占比最大的材料。但其固有的缺點是質(zhì)量比容量(不等同于能量密度)低,理論極限是274mAh/g,出于正極結構穩(wěn)定性考慮,實際只能達到理論值的50%,即137mAh/g。同時,由于地球上鈷元素的儲量比較低,也導致鈷酸鋰的成本偏高,難以在動力電池領域大規(guī)模普及,所以鈷酸鋰正極材料將被其他材料逐步取代。

  由于穩(wěn)定性,安全性,材料合成困難等方面的缺點,鎳酸鋰的商業(yè)應用較少,市場上很少看到,這里不做論述。

  錳酸鋰的商業(yè)化應用,主要在動力電池領域,是鋰離子電池一個比較重要的分支。如日產(chǎn)的leaf純電動轎車采用了日本AESC公司的錳酸鋰離子電池,早期的雪弗蘭Volt也采用韓國LG化學的錳酸鋰離子電池。錳酸鋰的突出優(yōu)點是成本低,低溫性能好,缺點是比容量低,極限在148mAh/g,且高溫性能差,循環(huán)壽命低。所以錳酸鋰的發(fā)展有明顯的瓶頸,近年來的研究方向主要是改性錳酸鋰,通過摻雜其他元素,改變其缺點。

  磷酸鐵鋰材料在中國熱過一陣子,一方面受美國科研機構和企業(yè)在技術方面的帶動,另一方面受比亞迪在國內(nèi)的產(chǎn)業(yè)化推動,前幾年國內(nèi)的鋰離子電池企業(yè)在動力電池領域基本都以磷酸鐵鋰材料為主。但是隨著全球各國對鋰離子電池能量密度的要求越來越高,而磷酸鐵鋰的比容量理論極限是170mAh/g,而實際上只能達到120mAh/g左右,已經(jīng)無法滿足當前和未來的市場需求。此外,磷酸鐵鋰的倍率性能一般,低溫特性差等缺點,也限制了磷酸鐵鋰的應用。最近比亞迪搞出了一個改性磷酸鐵鋰材料,把能量密度提升了不少,還未透露具體的技術細節(jié),不知道摻雜了什么材料在里面。就產(chǎn)品應用領域而言,電力儲能市場應該是磷酸鐵鋰離子電池的一個重要市場,相對而言,這個市場對能量密度不是特別敏感,而對長壽命,低成本,高安全性電池的迫切需求,正是磷酸鐵鋰材料的優(yōu)勢所在。

  日韓企業(yè)在近幾年大力推動三元材料的應用,鎳鈷錳三元材料逐漸成為市場的主流,國內(nèi)企業(yè)也采取跟隨策略,逐步轉向三元材料。三元材料的比容量較高,目前市場上的產(chǎn)品已經(jīng)可以達到170~180mAh/g,從而可以將電池單體的能量密度提高到接近200Wh/kg,滿足電動汽車的長續(xù)航里程要求。此外,通過改變?nèi)牧系呐浔龋▁,y的值),還可以達到良好的倍率性能,從而滿足PHEV和HEV車型對大倍率小容量鋰離子電池的需求,這也正是三元材料大行其道的原因。從化學式可以看出,鎳鈷錳三元材料綜合了鈷酸鋰(LiCoO2)和錳酸鋰(LiMn2O4)的一些優(yōu)點,同時因為摻雜了鎳元素,可以提升能量密度和倍率性能。

  鎳鈷鋁三元材料,嚴格來說,其實算是一種改性的鎳酸鋰(LiNiO2)材料,在其中摻雜了一定比例的鈷和鋁元素(占比較少)。商業(yè)化應用方面主要是日本的松下公司在做,其他鋰離子電池公司基本沒有研究這個材料。之所以拿來對比,是因為鼎鼎大名的 Tesla,就是使用松下公司的18650鎳鈷鋁三元電芯做電動汽車的動力電池系統(tǒng),并且做到了接近500公里的續(xù)航里程,說明了這種正極材料,還是有其獨特的價值。

  以上僅僅是比較常見的鋰離子電池正極材料,并不代表所有的技術路線。實際上,不管是高校和科研院所,還是企業(yè),都在努力研究新型的鋰離子電池正極材料,希望把能量密度和壽命等關鍵指標提升到更高的量級。當然,如果要在2020年達到250Wh/kg,甚至300Wh/kg的能量密度指標,現(xiàn)在商業(yè)化應用的正極材料都無法實現(xiàn),那么正極材料就需要比較大的技術變革,如改變層狀結構為尖晶石結構的固溶體類材料,以及有機化合物正極材料等,都是目前比較熱門的研究方向。

  2. 負極材料

  相對而言,針對鋰離子電池負極材料的研究,沒有正極材料那么多,但是負極材料對鋰離子電池性能的提高仍起著至關重要的作用,鋰離子電池負極材料的選擇應主要考慮以下幾個條件:

  1) 應為層狀或隧道結構,以利于鋰離子的脫嵌;

  2) 在鋰離子脫嵌時無結構上的變化,具有良好的充放電可逆性和循環(huán)壽命;

  3) 鋰離子在其中應盡可能多的嵌入和脫出,以使電極具有較高的可逆容量;

  4) 氧化還原反應的電位要低,與正極材料配合,使電池具有較高的輸出電壓;

  5) 首次不可逆放電比容量較?。?/p>

  6) 與電解質(zhì)溶劑相容性好;

  7) 資源豐富、價格低廉;

  8) 安全性好;

  9) 環(huán)境友好。

  鋰離子電池負極材料的種類繁多,根據(jù)化學組成可以分為金屬類負極材料(包括合金)、無機非金屬類負極材料及金屬氧化物類負極材料。

  (1)金屬類負極材料:這類材料多具有超高的嵌鋰容量。最早研究的負極材料是金屬鋰。由于電池的安全問題和循環(huán)性能不佳,金屬鋰作為負極材料并未得到廣泛應用。近年來,合金類負極材料得到了比較廣泛的研究,如錫基合金,鋁基合金、鎂基合金、銻基合等,是一個新的方向。

  (2)無機非金屬類負極材料:用作鋰離子電池負極的無機非金屬材料主要是碳材料、硅材料及其它非金屬的復合材料。

 ?。?)過渡金屬氧化物材料:這類材料一般具有結構穩(wěn)定,循環(huán)壽命長等優(yōu)點,如鋰過渡氧化物(鈦酸鋰等)、錫基復合氧化物等。

  就當前的市場而言,在大規(guī)模商業(yè)化應用方面,負極材料仍然以碳材料為主,石墨類和非石墨類碳材料都有應用。在汽車及電動工具領域,鈦酸鋰作為負極材料也有一定的應用,主要是具有非常優(yōu)異的循環(huán)壽命、安全性和倍率性能,但是會降低電池的能量密度,因此不是市場主流。其他類型的負極材料,除了SONY在錫合金方面有產(chǎn)品推出,大多仍以科學研究和工程開發(fā)為主,市場化應用的比較少。

  

  就未來的發(fā)展趨勢而言,如果能有效解決循環(huán)性能,硅基材料將可能取代碳材料成為下一代鋰離子電池的主要負極材料。錫合金,硅合金等合金類的負極材料,也是一個非常熱門的方向,將走向產(chǎn)業(yè)化。此外,安全性和能量密度較高的鐵氧化物,有可能取代鈦酸鋰(LTO),在一些長壽命和安全性要求較高的領域,得到廣泛應用。

  接下來的內(nèi)容,我們將就鋰離子電池與能量相關的兩個關鍵指標:能量密度和充放電倍率,展開一些簡短的論述。

  

  能量密度,是單位體積或重量可以存儲的能量多少,這個指標當然是越高越好,凡是濃縮的都是精華嘛。充放電倍率,是能量存儲和釋放的速度,最好是秒速,瞬間存滿或釋放,召之即來揮之即去。

  當然,這些都是理想,實際上受制于各種各樣的現(xiàn)實因素,我們既不可能獲得無限的能量,也不可能實現(xiàn)能量的瞬間轉移。如何不斷的突破這些限制,達到更高的等級,就是需要我們?nèi)ソ鉀Q的難題。

  五、 鋰離子電池的能量密度

  可以說,能量密度是制約當前鋰離子電池發(fā)展的最大瓶頸。不管是手機,還是電動汽車,人們都期待電池的能量密度能夠達到一個全新的量級,使得產(chǎn)品的續(xù)航時間或續(xù)航里程不再成為困擾產(chǎn)品的主要因素。

  

  從鉛酸電池、鎳鎘電池、鎳氫電池、再到鋰離子電池,能量密度一直在不斷的提升??墒翘嵘乃俣认鄬τ诠I(yè)規(guī)模的發(fā)展速度而言,相對于人類對能量的需求程度而言,顯得太慢了。甚至有人戲言,人類的進步都被卡在“電池”這兒了。當然,如果哪一天能夠實現(xiàn)全球電力無線傳輸,到哪兒都能“無線”獲得電能(像手機信號一樣),那么人類也就不再需要電池了,社會發(fā)展自然也就不會卡在電池上面。

  針對能量密度成為瓶頸的現(xiàn)狀,全球各國都制訂了相關的電池產(chǎn)業(yè)政策目標,期望引領電池行業(yè)在能量密度方面取得顯著的突破。中、美、日等國政府或行業(yè)組織所制定的2020年目標,基本上都指向300Wh/kg這一數(shù)值,相當于在當前的基礎上提升接近1倍。2030年的遠期目標,則要達到500Wh/kg,甚至700Wh/kg,電池行業(yè)必須要有化學體系的重大突破,才有可能實現(xiàn)這一目標。

  影響鋰離子電池能量密度的因素有很多,就鋰離子電池現(xiàn)有的化學體系和結構而言,具體都有哪些明顯的限制呢?

  前面我們分析過,充當電能載體的,其實就是電池當中的鋰元素,其他物質(zhì)都是“廢物”,可是要獲得穩(wěn)定的、持續(xù)的、安全的電能載體,這些“廢物”又是不可或缺的。舉個例子,一塊鋰離子電池當中,鋰元素的質(zhì)量占比一般也就在1%多一點,其余99%的成分都是不承擔能量存儲功能的其他物質(zhì)。愛迪生有句名言,成功是99%的汗水加上 1%的天賦,看來這個道理放之四海皆準啊,1%是紅花,剩下的99%就是綠葉,少了哪個都不行。

  那么要提高能量密度,我們首先想到的就是提高鋰元素的比例,同時要讓盡可能多的鋰離子從正極跑出來,移動到負極,然后還得從負極原數(shù)返回正極(不能變少了),周而復始的搬運能量。

  1. 提高正極活性物質(zhì)的占比

  提高正極活性物質(zhì)占比,主要是為了提高鋰元素的占比,在同一個電池化學體系中,鋰元素的含量上去了(其他條件不變),能量密度也會有相應的提升。所以在一定的體積和重量限制下,我們希望正極活性物質(zhì)多一些,再多一些。

  2. 提高負極活性物質(zhì)的占比

  這個其實是為了配合正極活性物質(zhì)的增加,需要更多的負極活性物質(zhì)來容納游過來的鋰離子,存儲能量。如果負極活性物質(zhì)不夠,多出來的鋰離子會沉積在負極表面,而不是嵌入內(nèi)部,出現(xiàn)不可逆的化學反應和電池容量衰減。

  3. 提高正極材料的比容量(克容量)

  正極活性物質(zhì)的占比是有上限的,不能無限制提升。在正極活性物質(zhì)總量一定的情況下,只有盡可能多的鋰離子從正極脫嵌,參與化學反應,才能提升能量密度。所以我們希望可脫嵌的鋰離子相對于正極活性物質(zhì)的質(zhì)量占比要高,也就是比容量指標要高。

  這就是我們研究和選擇不同的正極材料的原因,從鈷酸鋰到磷酸鐵鋰,再到三元材料,都是奔著這個目標去的。

  前面已經(jīng)分析過,鈷酸鋰可以達到137mAh/g,錳酸鋰和磷酸鐵鋰的實際值都在120mAh/g左右,鎳鈷錳三元則可以達到180mAh/g。如果要再往上提升,就需要研究新的正極材料,并取得產(chǎn)業(yè)化進展。

  4. 提高負極材料的比容量

  相對而言,負極材料的比容量還不是鋰離子電池能量密度的主要瓶頸,但是如果進一步提升負極的比容量,則意味著以質(zhì)量更少的負極材料,就可以容納更多的鋰離子,從而達到提升能量密度的目標。

  以石墨類碳材料做負極,理論比容量在372mAh/g,在此基礎上研究的硬碳材料和納米碳材料,則可以將比容量提高到600mAh/g以上。錫基和硅基負極材料,也可以將負極的比容量提升到一個很高的量級,這些都是當前研究的熱點方向。

  5. 減重瘦身

  除了正負極的活性物質(zhì)之外,電解液、隔離膜、粘結劑、導電劑、集流體、基體、殼體材料等,都是鋰離子電池的“死重”,占整個電池重量的比例在40%左右。如果能夠減輕這些材料的重量,同時不影響電池的性能,那么同樣也可以提升鋰離子電池的能量密度。

  

  在這方面做文章,就需要針對電解液、隔離膜、粘結劑、基體和集流體、殼體材料、制造工藝等方面進行詳細的研究和分析,從而找出合理的方案。各個方面都改善一些,就可以將電池的能量密度整體提升一個幅度。

  從以上的分析可以看出,提升鋰離子電池的能量密度是一個系統(tǒng)工程,要從改善制造工藝、提升現(xiàn)有材料性能、以及開發(fā)新材料和新化學體系這幾個方面入手,尋找短期、中期和長期的解決方案。

  六、 鋰離子電池的充放電倍率

  鋰離子電池的充放電倍率,決定了我們可以以多快的速度,將一定的能量存儲到電池里面,或者以多快的速度,將電池里面的能量釋放出來。當然,這個存儲和釋放的過程是可控的,是安全的,不會顯著影響電池的壽命和其他性能指標。

  倍率指標,在電池作為電動工具,尤其是電動交通工具的能量載體時,顯得尤為重要。設想一下,如果你開著一輛電動車去辦事,半路發(fā)現(xiàn)快沒電了,找個充電站充電,充了一個小時還沒充滿,估計要辦的事情都耽誤了。又或者你的電動汽車在爬一個陡坡,無論怎么踩油門(電門),車子卻慢的像烏龜,使不上勁,自己恨不得下來推車。

  顯然,以上這些場景都是我們不希望看到的,但是卻是當前鋰離子電池的現(xiàn)狀,充電耗時久,放電也不能太猛,否則電池就會很快衰老,甚至有可能發(fā)生安全問題。但是在許多的應用場合,我們都需要電池具有大倍率的充放電性能,所以我們又一次卡在了“電池”這兒。為了鋰離子電池獲得更好的發(fā)展,我們有必要搞清楚,都是哪些因素在限制電池的倍率性能。

  

  鋰離子電池的充放電倍率性能,與鋰離子在正負極、電解液、以及他們之間界面處的遷移能力直接相關,一切影響鋰離子遷移速度的因素(這些影響因子也可等效為電池的內(nèi)阻),都會影響鋰離子電池的充放電倍率性能。此外,電池內(nèi)部的散熱速率,也是影響倍率性能的一個重要因素,如果散熱速率慢,大倍率充放電時所積累的熱量無法傳遞出去,會嚴重影響鋰離子電池的安全性和壽命。因此,研究和改善鋰離子電池的充放電倍率性能,主要從提高鋰離子遷移速度和電池內(nèi)部的散熱速率兩個方面著手。

  1. 提高正、負極的鋰離子擴散能力

  鋰離子在正/負極活性物質(zhì)內(nèi)部的脫嵌和嵌入的速率,也就是鋰離子從正/負極活性物質(zhì)里面跑出來的速度,或者從正/負極表面進入活性物質(zhì)內(nèi)部找個位置“安家”的速度到底有多快,這是影響充放電倍率的一個重要因素。

  

  舉個例子,全球每年都有會很多的馬拉松比賽,雖然大家基本同一時間出發(fā),可是道路寬度有限,參與的卻人很多(有時多達上萬人),造成相互擁擠,加上參與人員的身體素質(zhì)參差不齊,比賽的隊伍最后會變成一個超長的戰(zhàn)線。有人很快到達終點,有人晚到幾個小時,有人跑到昏厥,半路就歇菜了。

  鋰離子在正/負極的擴散和移動,與馬拉松比賽基本差不多,跑得慢的,跑得快的都有,加上各自選擇的道路長短不一,嚴重制約了比賽結束的時間(所有人都跑完)。所以呢,我們不希望跑馬拉松,最好大家都跑百米,距離足夠短,所有人都可以快速達到終點,另外,跑道要足夠的寬,不要相互擁擠,道路也不要曲折蜿蜒,直線是最好的,要降低比賽難度。如此一來,裁判一聲令響,千軍萬馬一起奔向終點,比賽快速結束,倍率性能優(yōu)異。

  在正極材料處,我們希望極片要足夠的薄,也就是活性材料的厚度要小,這樣等于縮短了賽跑的距離,所以希望盡可能的提高正極材料壓實密度。在活性物質(zhì)內(nèi)部,要有足夠的孔間隙,給鋰離子留出比賽的通道,同時這些“跑道”分布要均勻,不要有的地方有,有的地方?jīng)]有,這就要優(yōu)化正極材料的結構,改變粒子之間的距離和結構,做到均勻分布。以上兩點,其實是相互矛盾的,提高壓實密度,雖然厚度變薄,但是粒子間隙會變小,跑道就會顯得擁擠,反之,保持一定的粒子間隙,不利于把材料做薄。所以需要尋找一個平衡點,以達到最佳的鋰離子遷移速率。

  

  此外,不同材料的正極物質(zhì),對鋰離子的擴散系數(shù)有顯著影響。因此,選擇鋰離子擴散系數(shù)比較高的正極材料,也是改善倍率性能的重要方向。

  負極材料的處理思路,與正極材料類似,也是主要從材料的結構、尺寸、厚度等方面著手,減小鋰離子在負極材料中的濃度差,改善鋰離子在負極材料中的擴散能力。以碳基負極材料為例,近年來針對納米碳材料的研究(納米管、納米線、納米球等),取代傳統(tǒng)的負極層狀結構,就可以顯著的改善負極材料的比表面積、內(nèi)部結構和擴散通道,從而大幅度提升負極材料的倍率性能。

  2. 提高電解質(zhì)的離子電導率

  鋰離子在正/負極材料里面玩的是賽跑,在電解質(zhì)里面的比賽項目卻是游泳。

  游泳比賽,如何降低水(電解液)的阻力,就成為速度提升的關鍵。近年來,游泳運動員普遍穿著鯊魚服,這種泳衣可以極大的降低水在人體表面形成的阻力,從而提高運動員的比賽成績,并且成為非常有爭議的話題。

  

  鋰離子要在正、負極之間來回穿梭,就如同在電解質(zhì)和電池殼體所構成的“游泳池”里面游泳,電解質(zhì)的離子電導率如同水的阻力一樣,對鋰離子游泳的速度有非常大的影響。目前鋰離子電池所采用的有機電解質(zhì),不管是液體電解質(zhì),還是固體電解質(zhì),其離子電導率都不是很高。電解質(zhì)的電阻成為整個電池電阻的重要組成部分,對鋰離子電池高倍率性能的影響不容忽視。

  除了提高電解質(zhì)的離子電導率之外,還需要著重關注電解質(zhì)的化學穩(wěn)定性和熱穩(wěn)定性。在大倍率充放電時,電池的電化學窗口變化范圍非常寬,如果電解質(zhì)的化學穩(wěn)定性不好,容易在正極材料表面氧化分解,影響電解質(zhì)的離子電導率。電解液的熱穩(wěn)定性則對鋰離子電池的安全性和循環(huán)壽命有非常大的影響,因為電解質(zhì)受熱分解時會產(chǎn)生很多氣體,一方面對電池安全構成隱患,另一方面有些氣體對負極表面的SEI膜產(chǎn)生破壞作用,影響其循環(huán)性能。

  因此,選擇具有較高的鋰離子傳導能力、良好的化學穩(wěn)定性和熱穩(wěn)定性、且與電極材料匹配的電解質(zhì)是提高鋰離子電池倍率性能的一個重要方向。

  3. 降低電池的內(nèi)阻

  這里涉及到幾種不同的物質(zhì)和物質(zhì)之間的界面,它們所形成的電阻值,但都會對離子/電子的傳導產(chǎn)生影響。

  一般在正極活性物質(zhì)內(nèi)部會添加導電劑,從而降低活性物質(zhì)之間、活性物質(zhì)與正極基體/集流體的接觸電阻,改善正極材料的電導率(離子和電子電導率),提升倍率性能。不同材料不同形狀的導電劑,都會對電池的內(nèi)阻產(chǎn)生影響,進而影響其倍率性能。

  正負極的集流體(極耳)是鋰離子電池與外界進行電能傳遞的載體,集流體的電阻值對電池的倍率性能也有很大的影響。因此,通過改變集流體的材質(zhì)、尺寸大小、引出方式、連接工藝等,都可以改善鋰離子電池的倍率性能和循環(huán)壽命。

  電解質(zhì)與正負極材料的浸潤程度,會影響電解質(zhì)與電極界面處的接觸電阻,從而影響電池的倍率性能。電解質(zhì)的總量、粘度、雜質(zhì)含量、正負極材料的孔隙等,都會改變電解質(zhì)與電極的接觸阻抗,是改善倍率性能的重要研究方向。

  鋰離子電池在第一次循環(huán)的過程中,隨著鋰離子嵌入負極,在負極會形成一層固態(tài)電解質(zhì)(SEI)膜,SEI膜雖然具有良好的離子導電性,但是仍然會對鋰離子的擴散有一定的阻礙作用,尤其是大倍率充放電的時候。隨著循環(huán)次數(shù)的增加,SEI膜會不斷脫落、剝離、沉積在負極表面,導致負極的內(nèi)阻逐漸增加,成為影響循環(huán)倍率性能的因素。因此,控制SEI膜的變化,也能夠改善鋰離子電池長期循環(huán)過程中的倍率性能。

  此外,隔離膜的吸液率和孔隙率也對鋰離子的通過性有較大的影響,也會一定程度上影響鋰離子電池的倍率性能(相對較小)。

  七、 鋰離子電池的循環(huán)壽命

  電池用著用著,感覺不耐用,容量沒有以前多了,這些都是循環(huán)壽命不斷衰減的體現(xiàn)。

  循環(huán)壽命的衰減,其實也就是電池當前的實際可用容量,相對于其出廠時的額定容量,不斷下降的一種變化趨勢。

  對于理想的鋰離子電池,在其循環(huán)周期內(nèi)容量平衡不會發(fā)生改變,每次循環(huán)中的初始容量都應該是一定值,然而實際上情況卻復雜得多。任何能夠產(chǎn)生或消耗鋰離子的副反應都可能導致電池容量平衡的改變,一旦電池的容量平衡狀態(tài)發(fā)生改變,這種改變就是不可逆的,并且可以通過多次循環(huán)進行累積,對電池循環(huán)性能產(chǎn)生嚴重影響。

  影響鋰離子電池循環(huán)壽命的因素有很多,但其內(nèi)在的根本原因,還是參與能量轉移的鋰離子數(shù)量在不斷減少。需要注意的是,電池當中的鋰元素總量并未減少,而是“活化”的鋰離子少了,它們被禁錮在了其他地方或活動的通道被堵塞了,不能自由的參與循環(huán)充放電的過程。

  那么,我們只要搞清楚這些本該參與氧化還原反應的鋰離子,都跑哪兒去了,就能夠搞清楚容量下降的機理,也就可以針對性的采取措施,延緩鋰電池的容量下降趨勢,提升鋰電池的循環(huán)壽命。

  1. 金屬鋰的沉積

  通過前面的分析,我們知道鋰離子電池當中是不應該存在鋰的金屬形態(tài),鋰元素要么是以金屬氧化物、碳鋰化合物的形態(tài)存在,要么是以離子的形態(tài)存在。

  金屬鋰的沉積,一般發(fā)生在負極表面。由于一定的原因,鋰離子在遷移到負極表面時,部分鋰離子沒有進入負極活性物質(zhì)形成穩(wěn)定的化合物,而是獲得電子后沉積在負極表面成為金屬鋰,并且不再參與后續(xù)的循環(huán)過程,導致容量下降。

  這種情況,一般有幾種原因造成:充電超過截止電壓;大倍率充電;負極材料不足。過充電或負極材料不足的時候,負極不能容納從正極遷移過來的鋰離子,導致金屬鋰的沉積發(fā)生。大倍率充電時,由于鋰離子短時間內(nèi)到達負極的數(shù)量過多,造成堵塞和沉積。

  金屬鋰的沉積,不但會造成循環(huán)壽命的下降,嚴重時還會導致正負極短路,造成嚴重的安全問題。

  要解決這個問題,就需要合理的正負極材料配比,同時嚴格限定鋰電池的使用條件,避免超過使用極限的情況。當然,從倍率性能著手,也可以局部改善循環(huán)壽命。

  2. 正極材料的分解

  作為正極材料的含鋰金屬氧化物,雖然具有足夠的穩(wěn)定性,但是在長期的使用過程中,仍然會不斷的分解,產(chǎn)生一些電化學惰性物質(zhì)(如Co3O4,Mn2O3等)以及一些可燃性氣體,破壞了電極間的容量平衡,造成容量的不可逆損失。

  這種情況在過充電情況下尤為明顯,有時甚至會發(fā)生劇烈的分解和氣體釋放,不但影響電池容量,還會造成嚴重的安全風險。

  除了嚴格限定電池的充電截止電壓之外,提高正極材料的化學穩(wěn)定性和熱穩(wěn)定性,也是降低循環(huán)壽命下降速度的可行方法。

  3. 電極表面的SEI膜

  前面講過,以碳材料為負極的鋰離子電池,在初次循環(huán)過程中,電解液會在電極表面形成一層固態(tài)電解質(zhì)(SEI)膜,不同的負極材料會有一定的差別,但SEI膜的成分主要由碳酸鋰、烷基酯鋰、氫氧化鋰等組成,當然也有鹽的分解產(chǎn)物,另外還有一些聚合物等。

  

  SEI膜的形成過程會消耗電池中的鋰離子,并且SEI膜并不是穩(wěn)定不變的,會在循環(huán)過程中不斷的破裂,露出來新的碳表面再與電解質(zhì)反應形成新的SEI 膜,這樣會不斷造成鋰離子和電解質(zhì)的持續(xù)損耗,導致電池的容量下降。SEI膜有一定的厚度,雖然鋰離子可以穿透,但是SEI膜會造成負極表面部分擴散孔道的堵塞,不利于鋰離子在負極材料的擴散,這也會造成電池容量的下降。

  4. 電解質(zhì)的影響

  在不斷的循環(huán)過程中,電解質(zhì)由于化學穩(wěn)定性和熱穩(wěn)定性的局限,會不斷發(fā)生分解和揮發(fā),長期累積下來,導致電解質(zhì)總量減少,不能充分的浸潤正負極材料,充放電反應不完全,造成實際使用容量的下降。

  電解質(zhì)中含有活潑氫的物質(zhì)和鐵、鈉、鋁、鎳等金屬離子雜質(zhì)。因為雜質(zhì)的氧化電位一般低于鋰離子電池的正極電位,易在正極表面氧化,氧化物又在負極還原,不斷消耗正負極活性物質(zhì),引起自放電,即在非正常使用的情況下改變電池放電。電池壽命是以充放電循環(huán)次數(shù)而定的,含雜質(zhì)的電解液直接影響電池循環(huán)次數(shù)。

  電解質(zhì)中還含有一定量的水,水會與電解質(zhì)中的LiFP6發(fā)生化學反應,生產(chǎn)LiF和HF,HF進而又破壞SEI膜,生成更多的LiF,造成LiF沉積,不斷的消耗活性的鋰離子,造成電池循環(huán)壽命下降。

  由以上分析可以看出,電解質(zhì)對鋰離子電池的循環(huán)壽命有非常重要的影響,選擇合適的電解質(zhì),將能夠明顯的提升電池的循環(huán)壽命。

  5. 隔離膜阻塞或損壞

  隔離膜的作用是將電池正負極分開防止短路。在鋰離子電池循環(huán)過程中,隔離膜逐漸干涸失效是電池早期性能衰退的一個重要原因。這主要是由于隔離膜本身的電化學穩(wěn)定性和機械性能不足,以及對電解質(zhì)對隔離膜的浸潤性在反復充電過程中變差造成的。由于隔離膜的干涸,電池的歐姆內(nèi)阻增大,導致充放電通道堵塞,充放電不完全,電池容量無法回復到初始狀態(tài),大大降低了電池的容量和使用壽命。

  6. 正負極材料脫落

  正負極的活性物質(zhì),是通過粘結劑固定在基體上面的,在長期使用過程中,由于粘結劑的失效以及電池受到機械振動等原因,正負極的活性物質(zhì)不斷脫落,進入電解質(zhì)溶液,這導致能夠參與電化學反應的活性物質(zhì)不斷減少,電池的循環(huán)壽命不斷下降。

  粘結劑的長期穩(wěn)定性和電池良好的機械性能,將能夠延緩電池循環(huán)壽命的下降速度。

  7. 外部使用因素

  鋰離子電池有合理的使用條件和范圍,如充放電截止電壓,充放電倍率,工作溫度范圍,存儲溫度范圍等。但是在實際使用當中,超出允許范圍的濫用情況非常普遍,長期的不合理使用,會導致電池內(nèi)部發(fā)生不可逆的化學反應,造成電池機理的破壞,加速電池的老化,造成循環(huán)壽命的迅速下降,嚴重時,還會造成安全事故。

  八、 鋰離子電池的安全性

  鋰離子電池的安全性問題,其內(nèi)在原因是電池內(nèi)部發(fā)生了熱失控,熱量不斷的累積,造成電池內(nèi)部溫度持續(xù)上升,其外在的表現(xiàn)是燃燒、爆炸等劇烈的能量釋放現(xiàn)象。

  電池是能量的高密度載體,本質(zhì)上就存在不安全因素,能量密度越高的物體,其能量劇烈釋放時的影響就越大,安全問題也越突出。汽油、天然氣、乙炔等高能量載體,也都存在同樣的問題,每年發(fā)生的安全事故,數(shù)不勝數(shù)。

  不同的電化學體系、不同的容量、工藝參數(shù)、使用環(huán)境、使用程度等,都對鋰離子電池的安全性有較大的影響。

  由于電池存儲能量,在能量釋放的過程中,當電池熱量產(chǎn)生和累積速度大于散熱速度時,電池內(nèi)部溫度就會持續(xù)升高。鋰離子電池由高活性的正極材料和有機電解液組成,在受熱條件下非常容易發(fā)生劇烈的化學副反應,這種反應將產(chǎn)生大量的熱,甚至導致的“熱失控”,是引發(fā)電池發(fā)生危險事故的主要原因。

  

  鋰離子電池內(nèi)部的熱失控,說明電池內(nèi)部的一些化學反應已經(jīng)不是我們此前所期待的“可控”和“有序”,而是呈現(xiàn)出不可控和無序的狀態(tài),導致能量的快速劇烈釋放。

  那么,我們來看看,都有哪些化學反應,會伴隨大量的熱產(chǎn)生,進而導致熱失控。

  1. SEI膜分解,電解液放熱副反應

  固態(tài)電解質(zhì)膜實在鋰離子電池初次循環(huán)過程中形成,我們既不希望SEI膜太厚,也不希望它完全不存在。合理的SEI膜存在,能夠保護負極活性物質(zhì),不跟電解液發(fā)生反應。

  

  可是當電池內(nèi)部溫度達到130℃左右時,SEI膜就會分解,導致負極完全裸露,電解液在電極表面大量分解放熱,導致電池內(nèi)部溫度迅速升高。

  這是鋰電池內(nèi)部第一個放熱副反應,也是一連串熱失控問題的起點。

  2. 電解質(zhì)的熱分解

  由于電解質(zhì)在負極的放熱副反應,電池內(nèi)部溫度不斷升高,進而導致電解質(zhì)內(nèi)的LiPF6和溶劑進一步發(fā)生熱分解。

  

  這個副反應發(fā)生的溫度范圍大致在130℃~250℃之間,同樣伴隨著大量的熱產(chǎn)生,進一步推高電池內(nèi)部的溫度。

  3. 正極材料的熱分解

  隨著電池內(nèi)部溫度的進一步上升,正極的活性物質(zhì)發(fā)生分解,這一反應一般發(fā)生在180℃~500℃之間,并伴隨大量的熱和氧氣產(chǎn)生。

  

  不同的正極材料,其活性物質(zhì)分解所產(chǎn)生的熱量是不同的,所釋放的氧氣含量也有所不同。磷酸鐵鋰正極材料由于分解時產(chǎn)生的熱量較少,因而在所有的正極材料中,熱穩(wěn)定性最為突出。鎳鈷錳三元材料分解時則會產(chǎn)生較多的熱量,同時伴有大量的氧氣釋放,容易產(chǎn)生燃燒或爆炸,因此安全性相對較低。

  4. 粘結劑與負極高活性物質(zhì)的反應

  負極活性物質(zhì)LixC6與PVDF粘結劑的反應溫度約從240℃開始,峰值出現(xiàn)在290℃,反應放熱可達1500J/g。

  由以上分析可以看出,鋰離子電池的熱失控,并不是瞬間完成的,而是一個漸進的過程。這個過程,一般由過充、大倍率充放電、內(nèi)短路、外短路、振動、碰撞、跌落、沖擊等原因,導致電池內(nèi)部短時間內(nèi)產(chǎn)生大量的熱,并不斷的累積,推動電池的溫度不斷上升。

  

  一旦溫度上升到內(nèi)部連鎖反應的門檻溫度(約130℃),鋰離子電池內(nèi)部將會自發(fā)的產(chǎn)生一系列的放熱副反應,并進一步加劇電池內(nèi)部的熱量累積和溫度上升趨勢,這一過程還會析出大量的可燃性氣體。當溫度上升到內(nèi)部溶劑和可燃性氣體的閃點、燃點時,將會導致燃燒和爆炸等安全事故。

  剛出廠的鋰離子電池通過安全測試認證,并不代表鋰離子電池在生命周期中的安全性。根據(jù)我們前面的分析,在長期的使用過程中,會發(fā)生負極表面的鋰金屬沉積,電解液的分解和揮發(fā),正負極活性物質(zhì)的脫落,電池內(nèi)部結構變形,材料中混入金屬雜質(zhì),以及其他很多非預期的變化,這些都會導致電池發(fā)生內(nèi)短路,進而產(chǎn)生大量的熱量。再加上外部的各種濫用情況,如過充、擠壓、金屬穿刺、碰撞、跌落、沖擊等,也會導致電池在短時間內(nèi)產(chǎn)生大量的熱量,成為熱失控的誘因。

  在鋰離子電池的使用過程中,沒有絕對的安全性,只有相對的安全性。我們要盡量避免濫用的情況出現(xiàn),降低危害事件發(fā)生的概率,同時也要從正負極材料、電解液、隔離膜等主要成分入手,選擇化學穩(wěn)定性和熱穩(wěn)定性優(yōu)良的材料,具有良好的阻燃特性,在出現(xiàn)內(nèi)外部熱失控的誘因時,降低內(nèi)部副反應的發(fā)熱量,或者具有很高的燃點溫度,避免熱失控現(xiàn)象的發(fā)生。在電池結構和殼體設計上面,要充分考慮結構穩(wěn)定性,達到足夠的機械強度,能夠耐受外部的應力,確保內(nèi)部不發(fā)生明顯的變形。此外,散熱性能也是需要著重考慮的,如果熱量能夠及時的散發(fā)出去,內(nèi)部的溫度就不會持續(xù)上升,熱失控也就不會發(fā)生。

  鋰離子電池的安全性設計,是系統(tǒng)論,單純的以正極材料分解發(fā)熱來衡量鋰離子電池安全性并不全面。從系統(tǒng)的角度講,磷酸鐵鋰電池不見得一定比三元材料的電池更安全,因為最終影響熱失控的因素很多,正極材料分解所產(chǎn)生的熱量僅僅是其中的一個因素。

  九、 總結與展望

  大約在135億年前,經(jīng)過所謂的“大爆炸”之后,宇宙中的物質(zhì)、能量、時間和空間形成了現(xiàn)在的樣子。宇宙的這些基本特征,就成了“物理學”。

  在這之后過了大約30萬年,物質(zhì)和能量開始形成復雜的結構,稱為“原子”,再進一步構成“分子”。至于這些原子和分子的故事以及它們?nèi)绾位樱统闪?ldquo;化學”。

  所有關于電池的原理,都得通過物理學和化學的理論來闡述,并受到客觀規(guī)律的制約,脫離了這個范疇,我們既不可能發(fā)明電池,也不可能正確使用電池。

  人類對電池的研究和使用已經(jīng)有近200年的歷史,在大規(guī)模的商業(yè)化應用方面,鉛酸電池、堿性電池、鋅錳電池、鎳鎘電池、鎳氫電池、鋰離子電池早已滲透到人類社會的方方面面,在支持工業(yè)化社會的正常運作方面,起著無可替代的作用。

  人類對能量進行移動存儲的追求,隨著經(jīng)濟規(guī)模的擴大,呈現(xiàn)快速增長的趨勢,這也在客觀上推動了電池技術的發(fā)展和變革,要做到更快、更強、更長壽、更安全、更環(huán)保,同時單位價格還要更便宜。

  自SONY在90年代將鋰離子電池商業(yè)化以來,經(jīng)過20多年的發(fā)展,現(xiàn)有的電化學體系已經(jīng)逐步接近了瓶頸,未來將逐步進入“后鋰電池”時代。市場的強勁需求,必將推動和催生新的材料、新的化學體系、新的工藝在電池領域的應用,從而實現(xiàn)大的突破。

  

  在電池產(chǎn)業(yè),新的研究方向層出不窮,而比較有希望商業(yè)化的方向,比如全固態(tài)鋰離子電池、鈉離子電池、鋰-硫電池、鋰空氣電池等。“后鋰電池”時代,將會是百花齊放、百家爭鳴的局面,市場需求的多樣性,技術路線的多樣性,再結合原料供應的地緣因素,將給我們帶來更多的選擇和更好的體驗。



關鍵詞: 鋰離子電池

評論


相關推薦

技術專區(qū)

關閉