新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 逐次逼近型ADC:確保首次轉換有效

逐次逼近型ADC:確保首次轉換有效

作者: 時間:2017-10-21 來源:網(wǎng)絡 收藏

  最高18位分辨率、10 MSPS 采樣速率的)可以滿足許多數(shù)據(jù)采集應用的需求,包括便攜式、工業(yè)、醫(yī)療和通信應用。本文介紹如何初始化 以實現(xiàn)有效轉換。

本文引用地址:http://2s4d.com/article/201710/367169.htm

  架構

  逐次逼近型由4個主要子電路構成:采樣保持放大器(SHA)、模擬比較器、參考數(shù)模轉換器(DAC)和逐次逼近型寄存器()。由于 控制著轉換器的運行,因此,逐次逼近型轉換器一般稱為 ADC。

  

  圖 1 基本 SAR ADC 架構

  在上電和初始化之后,CONVERT 上的一個信號會啟動轉換。開關閉合,將模擬輸入連接至 SHA,后者獲得輸入電壓。當開關斷開時,比較器將確定模擬輸入(此時存儲于保持電容)是大于還是小于 DAC 電壓。開始時,最高有效位(MSB)開啟,將 DAC 輸出電壓設為中間電平。在比較器輸出建立之后,如果 DAC 輸出大于模擬輸入,逐次逼近寄存器將關閉 MSB;如果輸出小于模擬輸入,則會使其保持開啟。下一個最高有效位會重復這一過程,如果比較器確定 DAC 輸出大于模擬輸入,則關閉 MSB;如果輸出小于模擬輸入,則會使其保持開啟。這個二進制搜索過程將持續(xù)下去,直到寄存器中的每一位都測試完畢為止。結果得到的 DAC 輸入是采樣輸入電壓的數(shù)字近似值,并由 ADC 在轉換結束時輸出。

  與 SAR轉換代碼相關的因素

  本文將討論與有效首次轉換相關的下列因素:

  •   電源順序(AD765x-1)
  •   訪問控制(AD7367)
  •   RESET (AD765x-1/AD7606)
  •   REFIN/REFOUT (AD765x-1)
  •   模擬輸入建立時間(AD7606)
  •   模擬輸入范圍(AD7960)
  •   省電/待機模式(AD760x)
  •   延遲(AD7682/AD7689、AD7766/AD7767)
  •   數(shù)字接口時序
  •   電源序列

  些采用多個電源的ADC擁有明確的上電序列。AN-932 應用筆記電源序列列為這些ADC電源的設計提供了良好的參考。應該特別注意模擬和參考輸入,因為這些一般不得超過模擬電源電壓0.3 V 以上。 因此, AGND – 0.3 V 《 VIN 《 VDD + 0.3 V 且 AGND – 0.3 V 《 VREF 《 VDD + 0.3V。 模擬電源應在模擬輸入或基準電壓之前開啟,否則,模擬內核可能會以閂鎖狀態(tài)上電。類似地,數(shù)字輸入應在 DGND − 0.3 V和VIO + 0.3 V之間。I/O電源必須在接口電路之前(或與其同時)開啟,否則,這些引腳上的ESD二極管可能變成正偏,而且數(shù)字內核可能以未知狀態(tài)上電。

  電源斜坡過程中的數(shù)據(jù)訪問

  在電源穩(wěn)定之前不得訪問ADC,因為這樣可能使其進入未知狀態(tài)。在圖 2 所示例子中,主機FPGA正在嘗試從AD7367 讀取數(shù)據(jù),而DVCC正在斜升,結果可能使ADC進入未知狀態(tài)。

  

  圖 2 在 DVCC 斜升過程中讀取數(shù)據(jù)

  通過復位實現(xiàn) SAR ADC初始化

  許多SAR ADC(如AD760x和AD765x-1)在上電后需要通過 RESET來實現(xiàn)初始化。在所有電源都穩(wěn)定之后,應施加一個指定的RESET脈沖,以確保ADC以預期狀態(tài)啟動,同時使數(shù)字邏輯控制處于默認狀態(tài),并清除轉換數(shù)據(jù)寄存器。上電時,電壓開始在REFIN/REFOUT 引腳上建立,ADC進入采集模式,同時配置用戶指定模式。完全上電后,AD760x應看到一個上升沿RESET將其配置為正常工作模式。RESET高脈沖寬度典型值為50nss。



  建立基準電壓

  ADC 將模擬輸入電壓轉換成指向基準電壓的數(shù)字代碼,因此,基準電壓必須在首次轉換前穩(wěn)定下來。許多 SAR ADC 都有一個 REFIN/REFOUT 引腳和一個 REF 或 REFCAP 引腳。外部基準電壓可能會通過 REFIN/REFOUT 引腳過驅內部基準電壓源,或者,內部基準電壓源可能會直接驅動緩沖。REFCAP 引腳上的電容會使內部緩沖輸出去耦,而這正是用于轉換的基準電壓源。圖 3 所示為 AD765x-1 數(shù)據(jù)手冊中的參考電路示例。

  

  圖 3 AD765x-1 參考電路

  確保 REF 或 REFCAP 上的電壓在首次轉換之前已建立。壓擺率和建立時間因不同的儲能電容而異,如圖 4 所示。

  

  圖 4 AD7656-1 REFCAPA/B/C 引腳在不同電容下的電壓斜坡

  另外,設計不佳的參考電路可能導致嚴重的轉換錯誤。參考電路問題最常見的表現(xiàn)是“粘連”代碼,其原因可能是儲能電容的尺寸和位置、驅動強度不足或者輸入存在大量噪聲。 精密逐次逼近型ADC的基準電壓源設計 計作者:Alan Walsh (模擬對話第47卷第 2期,2013年)詳細討論了SAR ADC的基準電壓源設計。

  模擬輸入建立時間

  對于多通道、多路復用應用,驅動器放大器和 ADC 的模擬輸入電路必須使內部電容陣列以 16 位水平(0.00076%)建立滿量程階躍。不幸的是,放大器數(shù)據(jù)手冊一般將建立精度指定為 0.1%或 0.01%。指定的建立時間可能與 16 位精度的建立時間顯著不同,因此選擇驅動器之前應進行驗證。

  要特別注意多路復用應用中的建立時間。在多路復用器切換之后,要確保留出足夠的時間,以便模擬輸入能在轉換開始之前建立至指定的精度。在配合 AD7606 使用多路復用器時,應為±10-V輸入范圍留出至少 80 µs的時間,為±5-V范圍留出至少 88 µs,以便給選定通道足夠的時間來建立至 16 位分辨率。面向精密SAR的前端放大器和RC濾波器設計作者:Alan Walsh(模擬對話 話第 46 卷第 4 期,2012 年)為放大器的選擇提供了更多細節(jié)。

  模擬輸入范圍

  確保模擬輸入處于指定的輸入范圍之內,要特別注意指定共模電壓的差分輸入范圍,如圖 5 所示。

  

  圖 5 共模電壓下的全差分輸入

  例如,AD7960 18位、 5 MSPS SAR ADC的差分輸入范圍為–VREF 至 +VREF, 但折合到地的 VIN+ 和 VIN− −都應該處于–0.1 V至 VREF + 0.1 V的范圍內,且共模電壓應為 VREF/2左右,如表1所示。

  表 1 AD7960的模擬輸入規(guī)格



  使 SAR ADC退出關斷或待機模式

  為了節(jié)能,有些SAR ADC會在空閑時進入關斷或待機模式。在首次轉換開始前,要確保ADC退出該低功耗模式。例如, AD7606 系列即提供了兩種節(jié)能模式:完全關斷和待機。這些模式由GPIO引腳STBY 和RANGE進行控制。

  根據(jù)圖6所示,當STBY 和RANGE返回高電平時,AD7606從完全關斷進入正常工作模式,并配置為±10-V的范圍。此時, REGCAPA、REGCAPB和REGCAP引腳上電至數(shù)據(jù)手冊所述的正確電壓。在進入待機模式時,上電時間約為 100 μs,但在外部基準電壓源模式下,這需要大約13 ms。從關斷模式上電時,經(jīng)過所需的上電時間后,必須施加RESET信號。數(shù)據(jù)手冊將上電與RESET上升沿之間所需時間規(guī)定為 tWAKE-UP SHUTDOWN。

  

  圖 6 AD7606 初始化時序

  帶延遲的 SAR ADC

  人們普遍認為,SAR ADC 沒有延遲,但有些 SAR ADC 確實存在延遲以便更新配置,因此,在經(jīng)過延遲時間(可能為數(shù)個轉換周期)之前,第一個有效轉換代碼可能未定義。

  例如,AD7985 擁有兩種轉換工作模式:turbo和正常。Turbo模式(支持最快的轉換速率,最高可達2.5 MSPS)不會在轉換間關斷。turbo模式下的第一次轉換含有無意義的數(shù)據(jù),應該予以忽略。另一方面,在正常模式下,第一次轉換是有意義的。

  對于 AD7682/AD7689,上電后的前三個轉換結果未定義,因為在第二個EOC之前,不會出現(xiàn)有效的配置。因此,需要兩次偽轉換,如圖 7 所示。

  

  圖 7 AD7682/AD7689 的通用時序

  當在硬件模式下使用 AD765x-1 時,在 BUSY 信號下降沿對 RANGE 引腳的邏輯狀態(tài)進行采樣,以決定下一次同步轉換的模擬輸入范圍。在有效的 RESET 脈沖之后,AD765x-1 將默認在±4 × VREF 范圍內工作,無延遲問題。然而,如果 AD765x-1 工作于±2 × VREF 范圍內,則必須利用偽轉換周期在 BUSY的第一個下降沿選擇范圍。

  另外,有些SAR ADC(如AD7766/AD7767過采樣SAR ADC)有后數(shù)字濾波器,結果會導致更多延遲。當將模擬輸入多路復用至這類ADC時,主機必須等到數(shù)字濾波器完全建立后才能獲得有效轉換結果;經(jīng)過該建立時間后,方可切換通道。

  如表 2 所示,AD7766/AD7767 的延遲為 74 除以輸出數(shù)據(jù)速率 (74/ODR)的商值。在運行于最高輸出數(shù)據(jù)速率 128 kHz 時, AD7766/AD7767 支持 1.729 kHz 的多路復用器開關速率。

  表 2 AD7766/AD7767的數(shù)字濾波器延遲

  數(shù)字接口時序

  最后,但同樣重要的是,主機可以通過一些常見的接口選項(如并行、并行 BYTE、IIC、SPI 和菊花鏈模式下的 SPI)來訪問 SAR ADC 的轉換結果。要得到有效的轉換數(shù)據(jù),必須確保遵循數(shù)據(jù)手冊中的數(shù)字接口時序規(guī)格。

  結論

  為了獲得 SAR ADC 的第一個有效轉換代碼,務必遵循本文討論的建議??赡苓€需要其他具體配置支持;請查看目標 SAR ADC 數(shù)據(jù)手冊或者應用筆記,了解關于第一個轉換周期開始之前初始化的相關內容。

  參考文獻

  Kester, Walt. Data Converter Support Circuits. Chapter 7, Data Conversion Handbook.

  Kester, Walt. “Which ADC Architecture Is Right for Your Application?” Analog Dialogue, Volume 39, Number 2, 2005.

  Walsh, Alan. “Front-End Amplifier and RC Filter Design for a Precision SAR Analog-to-Digital Converter.” Analog Dialogue, Volume 46, Number 4, 2012.

  作者簡介

  
Steven Xie [steven.xie@analog.com]2011年3月加入 ADI北京分公司,擔任ADI中國設計中心的ADC應用工程師。他負責中國市場精密ADC產(chǎn)品的技術支持工作。在此之前,他曾在Ericsson CDMA團隊做過四設計人員。2007 年,Steven畢業(yè)于北京航空航天大學,并獲得通信與信息系統(tǒng)碩士學位。



評論


相關推薦

技術專區(qū)

關閉