物聯(lián)網(wǎng)領域涵蓋面廣 芯片設計須因地制宜
物聯(lián)網(wǎng)(IoT)是將日常生活萬事萬物都可無線鏈接上網(wǎng)絡的一個統(tǒng)稱,但在整體物聯(lián)網(wǎng)領域中所包含的終端技術非常多且復雜,因此并沒有單一的芯片或裝置技術能夠含括整個物聯(lián)網(wǎng)領域的需求,顯示這是一個集眾多技術、服務以及市場在一身的龐大科技領域。所有這些均連結至互聯(lián)網(wǎng),未來隨著物聯(lián)網(wǎng)定義的持續(xù)演進,物聯(lián)網(wǎng)架構設計也將持續(xù)見到演進及變革。
本文引用地址:http://2s4d.com/article/201708/362529.htm
為了描述出一個完整的物聯(lián)網(wǎng)體系,將需要建構一個三層的架構,其一包含服務器與云端零組件、其二為介于物聯(lián)網(wǎng)邊緣裝置(edge device)與云端之間的網(wǎng)關零組件,其三則是作為真實世界與網(wǎng)絡之間鏈接的物聯(lián)網(wǎng)邊緣裝置,此即各類終端物聯(lián)網(wǎng)產品,如智能家居產品線等。
雖然上述過程看似有其邏輯性,不過在物聯(lián)網(wǎng)邊緣裝置方面,許多情況下卻是由效能較差的傳感器來搜集數(shù)據(jù),再傳送這些資料至云端供進行分析處理,有時候甚至傳送速度太慢以至于無法將全數(shù)數(shù)據(jù)上傳云端,這便形成了為物聯(lián)網(wǎng)設計芯片或傳感器時變得非常困擾的情況。
一方面這些物聯(lián)網(wǎng)邊緣裝置成本不能太高,但在部分物聯(lián)網(wǎng)市場又需要這些裝置不僅具可靠性又必須安全,且還必須符合大量標準規(guī)范,如在汽車領域還必須符合諸如ISO 26262等多項標準、在工業(yè)物聯(lián)網(wǎng)(IIoT)領域符合OMAC及OPC等工業(yè)標準等,這些都為物聯(lián)網(wǎng)裝置在正式問世前增加許多成本及時間。
特別是在移動電子領域,這些物聯(lián)網(wǎng)系統(tǒng)設計上還需要非常省電及延長電池續(xù)航力,這就需要復雜的電源管理技術,如此也將進一步提高成本及復雜性,更不用提這些裝置需要具備足夠的效能完成任務。
為了在降低成本且維持效能情況下開發(fā)適合物聯(lián)網(wǎng)邊緣裝置搭載的芯片及傳感器等零組件,運用摩爾定律(Moore’s Law)將微處理器持續(xù)微縮,如將物聯(lián)網(wǎng)芯片從現(xiàn)行55納米及40納米技術水準,提升至40納米及28納米水平,將有助于降低成本。
若要提升安全性,芯片設計也必須改進至采用32位;另如將多個傳感器封裝至單一叢集以創(chuàng)造規(guī)模經(jīng)濟,也是一個能夠降低成本的方式。畢竟這些邊緣裝置必須針對各日常生活應用領域客制化設計與打造,存有各式復雜的設計要求,甚至有時存在著高量產需求,因此壓低成本將有其幫助。
隨著邊緣裝置搜集到更多數(shù)據(jù),網(wǎng)關會無法負荷將如此大量數(shù)據(jù)都傳送至云端、再由云端進行分析處理的任務,這也因此對中階運算平臺形成需求性,這類平臺適合介于云端與邊緣裝置之間,可成為智能或簡單的網(wǎng)關、或是作為邊緣服務器等。
此外,讓邊緣裝置導入人工智能(AI)芯片直接就近處理大量數(shù)據(jù)、無需再上傳數(shù)據(jù)至云端,也是解決此一問題的辦法之一,前提是要開發(fā)出具足夠處理分析能力的AI芯片。云端接收到的邊緣裝置搜集數(shù)據(jù)往往不一致且龐大,這類資料可能在AI上作為模式識別的一部分,或只能進行不適合于量子化學軟件Gaussian分布的像差篩選。
為解決此問題,芯片制造商與系統(tǒng)業(yè)者開始為邏輯與傳輸量設計全新的架構,在同樣情況下將部分處理過程轉移至網(wǎng)絡中,或甚至導入各類型內存。
上述三層架構裝置將以連網(wǎng)形式作業(yè),安全問題也成為愈來愈重要的課題、必須加以防范,因而需要在架構層級就予以解決,若裝置由更多分散零組件打造,安全防護問題將變得更困難,因此若能將所有零組件功能整合至單一芯片,將有助減少遭網(wǎng)絡攻擊風險。
評論