功率穩(wěn)壓逆變電源的設計與應用介紹
目前國內(nèi)大多數(shù)采用的長延時熱脫扣試驗方案是通過變壓器直接對斷路器施加一個電壓以獲得測試電流。在測試過程中,由于電網(wǎng)電壓的波動、載流電路中引線電阻變化、負載本身電阻發(fā)熱變化,使測試電流隨之變動,難以滿足國家標準的要求。本文介紹了一種功率穩(wěn)壓逆變電源,具有工作穩(wěn)定可靠、輸入功率因數(shù)高、輸出精度高、波形失真度小、效率高的優(yōu)點。
本文引用地址:http://2s4d.com/article/201612/327604.htm標稱功率300W的逆變電源,用于家庭電風扇、電視機,以及日常照明等是不成問題的。300W逆變器,利用12V/60AH蓄電池向上述家用電器供電,一次充滿電后,可使用近5小時。不過,即使蓄電池電壓充足,啟動180立升的電冰箱仍有困難,因啟動瞬間輸出電壓下降為不足180V而失敗。電冰箱壓縮機標稱功率多為100W左右,實際啟動瞬間電流可達2A以上,若欲使啟動瞬間降壓不十分明顯,必須將輸出功率提高至600VA.如在增大輸出功率的同時,采用PWM穩(wěn)壓系統(tǒng),可使啟動瞬間降壓幅度明顯減小。無論電風扇還是電冰箱,應用逆變電源供電時,均應在逆變器輸出端增設圖1中的LC濾波器,以改善波形,避免脈沖上升沿尖峰擊穿電機繞組。
采用雙極型開關(guān)管的逆變器,基極驅(qū)動電流基本上為開關(guān)電流的1/β,因此大電流開關(guān)電路必須采用多級放大,不僅使電路復雜化,可靠性也變差而且隨著輸出功率的增大,開關(guān)管驅(qū)動電流需大于集電極電流的1/β,致使普通驅(qū)動IC無法直接驅(qū)動。雖說采用多級放大可以達到目的,但是波形失真卻明顯增大,從而導致開關(guān)管的導通/截止損耗也增大。目前解決大功率逆變電源及UPS的驅(qū)動方案,大多采用MOS FET管作開關(guān)器件.
MOSFET管的應用
近年來,金屬氧化物絕緣柵場效應管的制造工藝飛速發(fā)展,使之漏源極耐壓(VDS)達kV以上,漏源極電流(IDS)達50A已不足為奇,因而被廣泛用于高頻功率放大和開關(guān)電路中。
除此而外,還有雙極性三極管與MOS FET管的混合產(chǎn)品,即所謂IGBT絕緣柵雙極晶體管。顧名思義,它屬MOS FET管作為前級、雙極性三極管作為輸出的組合器件。因此,IGBT既有絕緣柵場效應管的電壓驅(qū)動特性,又有雙極性三極管飽合壓降小和耐壓高的輸出特性,其關(guān)斷時間達到0.4μs以下,VCEO達到1.8kV,ICM達到100A的水平,目前常用于電機變頻調(diào)速、大功率逆變器和開關(guān)電源等電路中。
一般中功率開關(guān)電源逆變器常用MOS FET管的并聯(lián)推挽電路。MOS FET管漏-源極間導通電阻,具有電阻的均流特性,并聯(lián)應用時不必外加均流電阻,漏源極直接并聯(lián)應用即可。而柵源極并聯(lián)應用,則每只MOS FET管必須采用單獨的柵極隔離電阻,避免各開關(guān)管柵極電容并聯(lián)形成總電容增大,導致充電電流增大,使驅(qū)動電壓的建立過程被延緩,開關(guān)管導通損耗增大。
MOSFET的驅(qū)動
近年來,隨著MOSFET生產(chǎn)工藝的改進,各種開關(guān)電源、變換器都廣泛采用MOS FET管作為高頻高壓開關(guān)電路,但是,專用于驅(qū)動MOS FET管的集成電路國內(nèi)極少見。驅(qū)動MOSFET管的要求是,低輸出阻抗,內(nèi)設灌電流驅(qū)動電路。所以,普通用于雙極型開關(guān)管的驅(qū)動IC不能直接用于驅(qū)動場效應管。
目前就世界范圍來說,可直接驅(qū)動MOSFET管的IC品種仍不多,單端驅(qū)動器常用的是UC3842系列,而用于推挽電路雙端驅(qū)動器有SG3525A(驅(qū)動N溝道場效應管)、SG3527A(驅(qū)動P溝道場效應管)和SG3526N(驅(qū)動N溝道場效應管)。然而在開關(guān)電源快速發(fā)展的近40年中,畢竟有了一大批優(yōu)秀的、功能完善的雙端輸出驅(qū)動IC.同時隨著MOSFET管應用普及,又開發(fā)了不少新電路,可將其用于驅(qū)動MOSFET管,解決MOSFET的驅(qū)動無非包括兩個內(nèi)容:一是降低驅(qū)動IC的輸出阻抗;二是增設MOSFET管的灌電流通路。為此,不妨回顧SG3525A、SG3527A、SG3526N以及單端驅(qū)動器UC3842系列的驅(qū)動級。
圖2a為上述IC的驅(qū)動輸出電路(以其中一路輸出為例)。振蕩器的輸出脈沖經(jīng)或非門,將脈沖上升沿和下降沿輸出兩路時序不同的驅(qū)動脈沖。在脈沖正程期間,Q1導通,Q2截止,Q1發(fā)射極輸出的正向脈沖,向開關(guān)管柵極電容充電,使漏-源極很快達到導通閾值。當正程脈沖過后,若開關(guān)管柵-源極間充電電荷不能快速放完,將使漏源極驅(qū)動脈沖不能立即截止。為此,Q1截止后,或非門立即使Q2導通,為柵源極電容放電提供通路。此驅(qū)動方式中,Q1提供驅(qū)動電流,Q2提供灌電流(即放電電流)。Q1為發(fā)射極輸出器,其本身具有極低的輸出阻抗。
為了達到上述要求,將普通用于雙極型開關(guān)管驅(qū)動輸出接入圖2b的外設驅(qū)動電路,也可以滿足MOS FET管的驅(qū)動要求。設計驅(qū)動雙極型開關(guān)管的集成電路,常采用雙端圖騰柱式輸出兩路脈沖,即兩路輸出脈沖極性是相同的,以驅(qū)動推挽的兩只NPN型三極管。為了讓推挽兩管輪流導通,兩路驅(qū)動脈沖的時間次序不同。如果第一路輸出正脈沖,經(jīng)截止后,過一死區(qū)時間,第二路方開始輸出。兩路驅(qū)動級采用雙極型三極管集射極開路輸出,以便于取得不同的脈沖極性,用于驅(qū)動NPN型或PNP型開關(guān)管。
圖2b中接入了PNP型三極管Q和二極管D,其作用是分別使驅(qū)動電流和灌電流分路。
前級驅(qū)動IC內(nèi)部緩沖器的發(fā)射極,在負載電阻R1上建立未倒相的正極性驅(qū)動脈沖使三極管Q截止。在驅(qū)動脈沖上升沿開始,正極性脈沖通過二極管D加到MOS FET開關(guān)管柵-源極,對柵源極電容CGS充電,當充電電壓達到開關(guān)管柵極電壓閾值時,其漏源極導通。正脈沖持續(xù)期過后,IC內(nèi)部緩沖放大器發(fā)射極電平為零,輸出端將有一定時間的死區(qū)。此時,Q的發(fā)射極帶有CGS充電電壓,因而Q導通,CGS通過Q的ec極放電,Q的集電極電流為灌電流通路。R2為開關(guān)管的柵極電阻,目的是避免開關(guān)管的柵極在Q、D轉(zhuǎn)換過程中懸空,否則其近似無窮大的高輸入阻抗極容易被干擾電平所擊穿。采用此方式利用普通雙端輸出集成電路,驅(qū)動MOS FET開關(guān)管,可以達到比較理想的效果。為了降低導通/截止損耗,D應選用快速開關(guān)二極管.Q的集電極電流應根據(jù)開關(guān)管決定,若為了提高輸出功率,每路輸出采用多只MOS FET管并聯(lián)應用,則應選擇ICM足夠大的灌流三極管和高速開關(guān)二極管。
TL494應用
目前所有的雙端輸出驅(qū)動IC中,可以說美國德州儀器公司開發(fā)的TL494功能最完善、驅(qū)動能力最強,其兩路時序不同的輸出總電流為SG3525的兩倍,達到400mA.僅此一點,使輸出功率千瓦級及以上的開關(guān)電源、DC/DC變換器、逆變器,幾乎無一例外地采用TL494.雖然TL494設計用于驅(qū)動雙極型開關(guān)管,然而目前絕大部分采用MOS FET開關(guān)管的設備,利用外設灌流電路,也廣泛采用TL494.為此,本節(jié)中將詳細介紹其功能及應用電路。其內(nèi)部方框圖如圖3所示。其內(nèi)部電路功能、特點及應用方法如下:
A.內(nèi)置RC定時電路設定頻率的獨立鋸齒波振蕩器,其振蕩頻率fo(kHz)=1.2/R(kΩ)。C(μF),其最高振蕩頻率可達300kHz,既能驅(qū)動雙極性開關(guān)管,增設灌電流通路后,還能驅(qū)動MOS FET開關(guān)管。
B.內(nèi)部設有比較器組成的死區(qū)時間控制電路,用外加電壓控制比較器的輸出電平,通過其輸出電平使觸發(fā)器翻轉(zhuǎn),控制兩路輸出之間的死區(qū)時間。當?shù)?腳電平升高時,死區(qū)時間增大。
C.觸發(fā)器的兩路輸出設有控制電路,使Q1、Q2既可輸出雙端時序不同的驅(qū)動脈沖,驅(qū)動推挽開關(guān)電路和半橋開關(guān)電路,同時也可輸出同相序的單端驅(qū)動脈沖,驅(qū)動單端開關(guān)電路。
D.內(nèi)部兩組完全相同的誤差放大器,其同相輸入端均被引出芯片外,因此可以自由設定其基準電壓,以方便用于穩(wěn)壓取樣,或利用其中一種作為過壓、過流超閾值保護。
E.輸出驅(qū)動電流單端達到400mA,能直接驅(qū)動峰值電流達5A的開關(guān)電路。雙端輸出脈沖峰值為2×200mA,加入驅(qū)動級即能驅(qū)動近千瓦的推挽式和橋式電路。
TL494的各腳功能及參數(shù)如下:第1、16腳為誤差放大器A1、A2的同相輸入端。最高輸入電壓不超過VCC+0.3V.第2、15腳為誤差放大器A1、A2的反相輸入端??山尤胝`差檢出的基準電壓。第3腳為誤差放大器A1、A2的輸出端。集成電路內(nèi)部用于控制PWM比較器的同相輸入端,當A1、A2任一輸出電壓升高時,控制PWM比較器的輸出脈寬減小。同時,該輸出端還引出端外,以便與第2、15腳間接入RC頻率校正電路和直接負反饋電路,一則穩(wěn)定誤差放大器的增益,二則防止其高頻自激。另外,第3腳電壓反比于輸出脈寬,也可利用該端功能實現(xiàn)高電平保護。第4腳為死區(qū)時間控制端。當外加1V以下的電壓時,死區(qū)時間與外加電壓成正比。如果電壓超過1V,內(nèi)部比較器將關(guān)斷觸發(fā)器的輸出脈沖。第5腳為鋸齒波振蕩器外接定時電容端,第6腳為鋸齒波振蕩器外接定時電阻端,一般用于驅(qū)動雙極性三極管時需限制振蕩頻率小于40kHz.第7腳為接地端。第8、11腳為兩路驅(qū)動放大器NPN管的集電極開路輸出端。當?shù)?、11腳接Vcc,第9、10腳接入發(fā)射極負載電阻到地時,兩路為正極性圖騰柱式輸出,用以驅(qū)動各種推挽開關(guān)電路。當?shù)?、11腳接地時,兩路為同相位驅(qū)動脈沖輸出。第8、11腳和9、10腳可直接并聯(lián),雙端輸出時最大驅(qū)動電流為2×200mA,并聯(lián)運用時最大驅(qū)動電流為400mA.第14腳為內(nèi)部基準電壓精密穩(wěn)壓電路端。輸出5V±0.25V的基準電壓,最大負載電流為10mA.用于誤差檢出基準電壓和控制模式的控制電壓。TL494的極限參數(shù):最高瞬間工作電壓(12腳)42V,最大輸出電流250mA,最高誤差輸入電壓Vcc+0.3V,測試/環(huán)境溫度≤45℃,最大允許功耗1W,最高結(jié)溫150℃,使用溫度范圍0~70℃,保存溫度-65~+150℃。
TL494的標準應用參數(shù):Vcc(第12腳)為7~40V,Vcc1(第8腳)、Vcc2(第11腳)為40V,Ic1、Ic2為200mA,RT取值范圍1.8~500kΩ,CT取值范圍4700pF~10μF,最高振蕩頻率(fOSC)≤300kHz.
圖4為外刊介紹的利用TL494組成的400W大功率穩(wěn)壓逆變器電路。它激式變換部分采用TL494,VT1、VT2、VD3、VD4構(gòu)成灌電流驅(qū)動電路,驅(qū)動兩路各兩只60V/30A的MOS FET開關(guān)管。如需提高輸出功率,每路可采用3~4只開關(guān)管并聯(lián)應用,電路不變。TL494在該逆變器中的應用方法如下:
第1、2腳構(gòu)成穩(wěn)壓取樣、誤差放大系統(tǒng),正相輸入端1腳輸入逆變器次級取樣繞組整流輸出的15V直流電壓,經(jīng)R1、R2分壓,使第1腳在逆變器正常工作時有近4.7~5.6V取樣電壓。反相輸入端2腳輸入5V基準電壓(由14腳輸出)。當輸出電壓降低時,1腳電壓降低,誤差放大器輸出低電平,通過PWM電路使輸出電壓升高。正常時1腳電壓值為5.4V,2腳電壓值為5V,3腳電壓值為0.06V.此時輸出AC電壓為235V(方波電壓)。第4腳外接R6、R4、C2設定死區(qū)時間。正常電壓值為0.01V.第5、6腳外接CT、RT設定振蕩器三角波頻率為100Hz.正常時5腳電壓值為1.75V,6腳電壓值為3.73V.第7腳為共地。第8、11腳為內(nèi)部驅(qū)動輸出三極管集電極,第12腳為TL494前級供電端,此三端通過開關(guān)S控制TL494的啟動/停止,作為逆變器的控制開關(guān)。當S1關(guān)斷時,TL494無輸出脈沖,因此開關(guān)管VT4~VT6無任何電流。S1接通時,此三腳電壓值為蓄電池的正極電壓。第9、10腳為內(nèi)部驅(qū)動級三極管發(fā)射極,輸出兩路時序不同的正脈沖。正常時電壓值為1.8V.第13、14、15腳其中14腳輸出5V基準電壓,使13腳有5V高電平,控制門電路,觸發(fā)器輸出兩路驅(qū)動脈沖,用于推挽開關(guān)電路。第15腳外接5V電壓,構(gòu)成誤差放大器反相輸入基準電壓,以使同相輸入端16腳構(gòu)成高電平保護輸入端。此接法中,當?shù)?6腳輸入大于5V的高電平時,可通過穩(wěn)壓作用降低輸出電壓,或關(guān)斷驅(qū)動脈沖而實現(xiàn)保護。在它激逆變器中輸出超壓的可能性幾乎沒有,故該電路中第16腳未用,由電阻R8接地。
該逆變器采用容量為400VA的工頻變壓器,鐵芯采用45×60mm2的硅鋼片。初級繞組采用直徑1.2mm的漆包線,兩根并繞2×20匝。次級取樣繞組采用0.41mm漆包線繞36匝,中心抽頭。次級繞組按230V計算,采用0.8mm漆包線繞400匝。開關(guān)管VT4~VT6可用60V/30A任何型號的N溝道MOS FET管代替。VD7可用1N400X系列普通二極管。該電路幾乎不經(jīng)調(diào)試即可正常工作。當C9正極端電壓為12V時,R1可在3.6~4.7kΩ之間選擇,或用10kΩ電位器 調(diào)整,使輸出電壓為額定值。如將此逆變器輸出功率增大為近600W,為了避免初級電流過大,增大電阻性損耗,宜將蓄電池改用24V,開關(guān)管可選用VDS為100V的大電流MOS FET管。需注意的是,寧可選用多管并聯(lián),而不選用單只IDS大于50A的開關(guān)管,其原因是:一則價格較高,二則驅(qū)動太困難。建議選用100V/32A的2SK564,或選用三只2SK906并聯(lián)應用。同時,變壓器鐵芯截面需達到50cm2,按普通電源變壓器計算方式算出匝數(shù)和線徑,或者采用廢UPS- 600中變壓器代用。如為電冰箱、電風扇供電,請勿忘記加入LC低通濾波器。
由于本文中的交流穩(wěn)流源實質(zhì)上是一個電壓型電流源,即通過快速調(diào)節(jié)輸出電壓來實現(xiàn)輸出穩(wěn)流。當輸出開路時,輸出電壓會迅速上升到到直流母線電壓附近,而不會像電流型電流源那樣升得很高。盡管如此,負載開路時,輸出電壓仍會迅速上升,并引起輸出電壓以LC諧振頻率進行振蕩,這兩者均會導致輸出波形嚴重畸變;此外,當輸出負載重新接上時會引起輸出瞬態(tài)過流。因此,所描述的交流穩(wěn)流逆變電源應用于低壓電器長延時熱脫扣試驗,適用于對斷路器、熱繼電器等低壓電器作長延時特性的校驗和測試。
評論