讓數(shù)字電源控制器與模擬控制器兼容的電路
最近,超大規(guī)模集成(VLSI)技術(shù)的發(fā)展擴(kuò)寬了數(shù)字控制應(yīng)用范圍,尤其是在電源電子元件方面的應(yīng)用。數(shù)字控制IC具有多種優(yōu)勢,比如裸片尺寸更小、無源元件數(shù)量更少、成本更低。 另外,數(shù)字控制可利用電源管理總線(PMBus)來完成系統(tǒng)配置;高級控制算法能改善性能;可編程性則可實現(xiàn)應(yīng)用優(yōu)化。隨著數(shù)字電源管理的進(jìn)一步普及并代替大量模擬控制器,它必須保持現(xiàn)有功能的向后兼容性,從而使數(shù)字電源模塊和模擬電源模塊均可在同一個系統(tǒng)中工作。
本文引用地址:http://2s4d.com/article/201612/327532.htm模擬電源模塊中一般使用輸出電壓調(diào)整,這樣最終用戶可以通過外部電阻更改電源模塊的輸出電壓。 它具有增強(qiáng)的靈活性,允許將某些經(jīng)過選擇的標(biāo)準(zhǔn)模塊用到幾乎所有應(yīng)用中,而無論電壓要求如何。圖1顯示AGF600-48S30模擬電源模塊中調(diào)整輸出電壓的典型配置。
輸出電壓可通過改變連接電源模塊正輸出端或接地端的電阻來進(jìn)行調(diào)節(jié)通過連接外部電阻RUP并使RDOWN浮空,可以向上調(diào)整輸出電壓(高于標(biāo)稱輸出電壓),或者通過連接外部電阻RDOWN并使RUP短路(電阻值為零)向下調(diào)整(低于標(biāo)稱輸出電壓)。
圖1. 調(diào)整AGF600-48S30 DC-DC轉(zhuǎn)換器的輸出電壓
在模擬解決方案中,RUP和RDOWN可改變誤差放大器的基準(zhǔn)電壓。 誤差放大器利用電阻分壓器感測輸出電壓,分壓器通過負(fù)反饋連接誤差放大器的反相輸入端。誤差放大器的輸出電壓控制驅(qū)動信號的占空比,進(jìn)而設(shè)置輸出電壓。因此,輸出電壓隨基準(zhǔn)電壓的變化而改變,而RUP或RDOWN可以改變基準(zhǔn)電壓,進(jìn)而向上或向下調(diào)整輸出電壓。
圖2顯示兩種廣泛用于模擬電源模塊中的調(diào)壓方式。圖2(a)中的模擬控制器引腳允許外部電阻 RDOWN降低誤差放大器同相輸入端的電壓,從而降低輸出電壓。外部電阻RUP與電阻分壓器串聯(lián)連接,可降低施加在誤差放大器反相輸入端的電壓,從而增加輸出電壓。圖2(b)中的模擬控制器不提供針對內(nèi)部基準(zhǔn)電壓的訪問,但可以加入一個外部誤差放大器和基準(zhǔn)電壓源,以便對輸出電壓進(jìn)行調(diào)整。外部放大器輸出端與內(nèi)部放大器輸出端相連,有效地旁路了內(nèi)部誤差放大器。然后,基準(zhǔn)電壓可采用之前的相同電路進(jìn)行配置,從而以同樣的方式對兩個電源模塊進(jìn)行調(diào)整。
圖2. 利用(a)帶有可配置內(nèi)部基準(zhǔn)電壓的模擬控制器,
或者(b)帶有固定內(nèi)部基準(zhǔn)電壓的模擬控制器調(diào)整模擬電源模塊的輸出電壓數(shù)字控制器來說所有的控制功能均由數(shù)字邏輯實現(xiàn)#e#
對于數(shù)字控制器來說所有的控制功能均由數(shù)字邏輯實現(xiàn) 。圖3所示為集成PMBus接口的高級數(shù)字控制器 ADP1051 的功能框圖。該器件非常適合高密度DC-DC電源轉(zhuǎn)換,具有6個可編程脈沖寬度調(diào)制(PWM)輸出,可控制大部分高效電源拓?fù)?/strong>。另外,該器件還能控制同步整流(SR),并集成6個模數(shù)轉(zhuǎn)換器(ADC),能夠采樣模擬輸入電壓、輸入電流、輸出電壓、輸出電流、溫度以及其它參數(shù)。 轉(zhuǎn)換為數(shù)據(jù)后,將這些信號發(fā)送至數(shù)字內(nèi)核模塊進(jìn)行處理。該器件采用靈活的狀態(tài)機(jī)架構(gòu),以硬件實現(xiàn)全部功能,提供穩(wěn)定可靠的解決方案,但無法通過編程實現(xiàn)設(shè)計以外的功能。器件的全部功能——包括輸出電壓調(diào)整——均以數(shù)字方式處理。為了調(diào)整輸出電壓,應(yīng)通過PMBus接口發(fā)送一條命令,改變數(shù)字基準(zhǔn)電壓值。
圖3. 數(shù)字控制器ADP1051功能框圖
考慮整個控制環(huán)路,輸出電壓通過電壓分壓器或者運(yùn)算放大器縮放到合適的值,然后輸入給VS+引腳。ADC對該電壓進(jìn)行采樣。 數(shù)字內(nèi)核知道數(shù)字化的輸出電壓值只采用邏輯電平信號工作,因此無法使用外部基準(zhǔn)電壓并旁路內(nèi)部比較器和濾波器。受限于這種固定的硬件配置,向后兼容現(xiàn)有模擬調(diào)整功能的唯一途徑是調(diào)節(jié)VS+引腳上的ADC檢測電壓。一種方法是重新配置反饋網(wǎng)絡(luò)。
圖4中,RD1和RD2構(gòu)成標(biāo)準(zhǔn)反饋網(wǎng)絡(luò)——一個簡單的電阻分壓器,可在ADC檢測輸出電壓之前對其進(jìn)行調(diào)節(jié)。檢測電壓為:
其中,VO是電源模塊的實際輸出電壓。采用標(biāo)準(zhǔn)反饋網(wǎng)絡(luò),則輸出電壓無法以模擬方式調(diào)整。如圖4所示,通過加入RUP, RT0和VTRIM的方式重新配置反饋網(wǎng)絡(luò)可對比例輸出電壓進(jìn)行調(diào)節(jié)。于是,檢測電壓為:
VS+引腳上的正常工作電壓為1 V。若 VTRIM為1 V左右且RT0遠(yuǎn)大于RD2,則可忽略電路的其余分支部分。復(fù)合網(wǎng)絡(luò)用作簡單分壓器,并調(diào)節(jié)RUP電阻值,提供類似于模擬控制器的特性,實現(xiàn)了模擬電源模塊中的電壓向上調(diào)整。
圖4. ADP1051可調(diào)整反饋網(wǎng)絡(luò)
然而,提供向下調(diào)整能力則要更為復(fù)雜。數(shù)字控制器不知道系統(tǒng)應(yīng)當(dāng)輸出的確切電壓值,因此它會嘗試最大程度降低VVS+ 和內(nèi)部數(shù)字基準(zhǔn)電壓之間的誤差。 VVS+ 將始終隨內(nèi)部數(shù)字基準(zhǔn)電壓的變化而改變,其典型值設(shè)為1 V。等式2顯示VO與 VTRIM呈線性關(guān)系。由圖2可知,向下調(diào)整輸出電壓的機(jī)制是產(chǎn)生一個表示所需輸出電壓與標(biāo)稱輸出電壓之差的誤差電壓。內(nèi)部的基準(zhǔn)電壓將先會減去這個誤差電壓,然后才會加到誤差放大器的同相端。若在誤差放大器的反相輸入端加入相同的電壓差,則兩個電路都將具有相同的輸出結(jié)果。因此, VTRIM應(yīng)當(dāng)與所需的輸出電壓和標(biāo)稱電壓之差成比例,而非采用固定值。
圖5中的電路具有兼容模擬向上或者向下調(diào)壓的功能兩個電阻分壓器產(chǎn)生兩個基準(zhǔn)電壓,其中一個基準(zhǔn)電壓表示模擬控制器所需的輸出基準(zhǔn)電壓,另一個表示內(nèi)部基準(zhǔn)電壓。利用一個電壓跟隨器來避免所需的輸出基準(zhǔn)電壓與后續(xù)電路相互影響。利用AD822 FET輸入運(yùn)算放大器,將所需的輸出基準(zhǔn)電壓(V1)從模擬控制器的內(nèi)部基準(zhǔn)電壓(V2)中去除,得到所需的電壓差。此電路的線性放大增益確保了VTRIM足夠大,從而能對VVS+產(chǎn)生影響。
圖5. 重新配置反饋網(wǎng)絡(luò),方便進(jìn)行模擬輸出調(diào)整
目標(biāo)輸出電壓調(diào)整特性的定義參見AGF600-48S30數(shù)據(jù)手冊。表1顯示了一組應(yīng)用于新配置反饋網(wǎng)絡(luò)中的參數(shù),采用此組參數(shù),可以使其兼容模擬電源模塊電壓調(diào)整特性。
表1. 圖5所示電路的電阻值
采用等式2和表1中的數(shù)值,便可計算輸出電壓調(diào)整特性。圖6顯示結(jié)果曲線。目標(biāo)值和計算值之間的誤差由重新配置的反饋網(wǎng)絡(luò)產(chǎn)生。該誤差極?。?biāo)稱輸出電壓為30 V時,該誤差值不足0.1 V),這表示該電路的輸出結(jié)果良好。
圖6. 使用重新配置的反饋網(wǎng)絡(luò)后,調(diào)整ADP1051輸出電壓的計算結(jié)果: (a)向下調(diào)整 (b)向上調(diào)整
通過計算可以驗證這種重新配置反饋網(wǎng)絡(luò)以調(diào)整輸出電壓的方法,并為其它使用數(shù)字基準(zhǔn)電壓的數(shù)字電源控制器——比如 ADM1041A, ADP1046A, ADP1050和ADP1053等——向后兼容模擬控制器提供思路,增強(qiáng)了數(shù)字電源解決方案的靈活性。
評論