基于單目視覺的汽車追尾預警系統研究
摘要:汽車追尾預警是智能車輛視覺導航系統中的重要研究內容。設計了一個應用于結構化道路環(huán)境,基于單目視覺的汽車追尾預警系統。該系統按照攝像機提供的道路圖像序列,首先利用一種新的邊緣檢測算法識別前方道路,然后利用灰度、邊緣和對稱性等特征識別前方車輛,接下來根據前后車距判斷其威脅等級,最終向駕駛員提供相應的聲光報警信號。該系統已在合肥的高速公路上進行了實驗。實驗結果顯示,系統運行速度達到車輛駕駛的實時性要求,能夠完成車輛檢測和碰撞預警的任務。
關鍵詞:車輛檢測;碰撞預警;單目視覺;智能車輛
0 引言
基于計算機視覺的高速公路防撞系統是當前智能交通管理系統研究的熱點之一。如何在多變的環(huán)境下快速準確地從視頻圖像里檢測到車道和前方車輛是實現這類系統面臨的最關鍵問題。近20年來,國內外很多研究人員對這個問題進行了大量研究,提出了多種多樣的實用算法并成功開發(fā)了一些視覺系統。這些系統所采用的算法基本上可以分為基于雙目視覺的方法、基于運動的方法、基于外形的方法和基于知識的方法。基于雙目立體視覺的方法計算量大,需要特殊硬件支持;基于運動的方法,無法檢測靜止目標且實時性差;基于外形的方法,因建立有效的培訓樣本仍然是需要研究的問題;基于知識的方法,在障礙物數量較少時效率較高,但復雜環(huán)境下錯誤率有所增加。
針對常規(guī)算法的不足,本文設計了一種精度高,穩(wěn)定性好的基于單目視覺的車載追尾預警系統。它利用一種新的邊緣檢測算法識別前方道路,然后利用陰影檢測與跟蹤相結合的方法識別前方車輛,接下來根據前后車距判斷其威脅等級,最終向駕駛員提供相應的聲光報警信號。
1 系統工作原理
系統硬件部分包括MCC-4060型CCD攝像機、VT-121視頻采集卡、GPS、PC-104工控機和顯示終端。GPS通過串口向工控機發(fā)送本車車速信息,安裝在車內擋風玻璃后的CCD攝像機將圖像幀通過視頻采集卡送入工控機,經過軟件的處理分析后,在顯示終端上標注出前車障礙物和道路標線,同時根據車速、間距等判斷危險等級,發(fā)出相應的聲光報警信號;
系統的軟件部分包括道路檢測、道路跟蹤、車輛檢測、車輛跟蹤、測距、決策和報警等模塊。當車速達到60km/h時,系統開始處理實時采集到的圖像序列。對于每一幀圖像,首先檢測并跟蹤圖像中的車道白線,然后在車道確定的感興趣區(qū)域內檢測車輛。如果存在疑似障礙車輛,則啟動車輛跟蹤,利用跟蹤信息進一步排除虛警。在實現對障礙車輛穩(wěn)定跟蹤后,估算出兩車間距和相對運動速度,判定其威脅等級,并發(fā)出相應的報警信號。
2 系統關鍵技術
2.1 道路檢測
目前,車道線檢測算法主要適用于光照充足的環(huán)境下。由于車道線與路面之間對比度大,因此很容易利用各種常規(guī)邊緣檢測算子獲得清晰的車道輪廓信息,然后選取合適的閾值對圖像進行二值化處理,最后采用Hough變換識別車道線。然而在復雜光照環(huán)境下,圖像會受到各種光線直射和物體多次反射形成雜散光的干擾,圖像光強不能反映車道本身突變性質,導致無法正確檢測出車道。
本系統采用了一種利用光密度差得到車道標線與路面反射率差,進而進行非線性邊緣檢測,再進行Hough變換的車道檢測算法。此算法可以有效解決在復雜光照條件下的車道檢測,也可以用于夜間的車道檢測。
另外,目前車道線的跟蹤研究主要采用固定區(qū)域法或者Kalman濾波法,根據前一幀車道線檢測的結果來劃分感興趣區(qū)域,以實時跟蹤車道線。然而,固定區(qū)域法對2幀圖像的相關性依賴大,劃分感興趣區(qū)域大,實時性差;而Kalman濾波法劃分感興趣區(qū)域小,容易產生檢測誤差,而造成跟蹤誤差累積,跟蹤正確率不高。因此,本系統在跟蹤車道線時采用了一種融合固定區(qū)域法和KaIman濾波法劃分感興趣區(qū)域的新方法。
一般來說,只將車道邊界線交點(即滅點)以下、2車道線之間的區(qū)域作為感興趣區(qū)域,考慮到跨道行駛的車輛依然對本車有威脅,算法把兩車道線分別向兩側平移40個像素,使感興趣區(qū)域擴展到可以覆蓋跨道車輛的范圍。
2.2 車輛檢測
圖像中包含車輛前方很大視野內的物體,如道路、樹木、護欄、標牌以及其他車輛,要從中準確檢測出前方車輛是一項困難的工作,而本文的車輛檢測模塊會根據圖像背景自動改變設置參數,以適應不斷變化的道路場景和光照條件。
要實現車輛的快速檢測,首先需要根據車輛的基本特征進行初步檢測,將所有可能的疑似車輛區(qū)域從圖像中提取出來,然后再根據其他特征對疑似區(qū)域進行篩選排除。
2.2.1 車輛初步檢測
初步檢測采用的特征是車輛陰影,即一塊位于目標車輛底部、灰度值明顯比附近路面區(qū)域低的區(qū)域。在一般環(huán)境條件下,大部分車輛都具有這一顯著特征。
車輛初步檢測的流程如圖1所示。車輛陰影和車道一樣具有灰度突變的特點,因此可以調用車道檢測算法對圖2(a)中的原始圖像做二值化處理,得到圖2(b)中的邊緣二值化圖像。同時還要對原始圖像進行灰度二值化,得到圖2(c)中的灰度二值化圖像。為提高檢測實時性,以本車附近路面區(qū)域的平均灰度作為二值化閾值。由于邊緣二值化圖像和灰度二值化圖像都包括了車輛的下底邊,將這兩幅圖像進行“或”運算,就可以得到如圖2(d)所示的車輛陰影圖像。
評論