新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > 基于FPGA的OLED真彩色顯示的設(shè)計方案簡述

基于FPGA的OLED真彩色顯示的設(shè)計方案簡述

作者: 時間:2012-06-27 來源:網(wǎng)絡(luò) 收藏

數(shù)字驅(qū)動電路的困難在于工作頻率比模擬驅(qū)動電路高得多,現(xiàn)階段較為實用的灰度調(diào)制方法主要有兩種。一種是脈寬調(diào)制法,即對驅(qū)動脈沖實現(xiàn)占空比的控制; 另一種方法是子場控制法,這種方法將發(fā)光時間按1∶ 2∶ 4∶ 8∶ …劃分為若干個子場,不同的子場導(dǎo)通組合,就能實現(xiàn)不同的灰度等級。但采用脈寬調(diào)制法,其時序復(fù)雜,要求顯示屏有較高響應(yīng)速度; 而采用子場法要求驅(qū)動頻率較高,對高灰度級的實現(xiàn)難度大。

考慮到幀頻與 屏體顯示效率的折中,使驅(qū)動電路工作頻率在一個合理水平,在脈寬調(diào)制和子場原理的基礎(chǔ)上,對這兩種方法進行優(yōu)化,256 級灰度采用通過對圖像數(shù)據(jù)按位分時顯示的方法實現(xiàn),即對輸入的8 bit 像素信號RGB,通過給每種顏色字節(jié)的不同位分配不同的顯示時間達到灰度顯示的目的,使每位的顯示時間為128∶ 64∶ 32∶ 16∶ 8∶ 4∶ 2∶ 1,利用其組合可以得到256 級灰度顯示所對應(yīng)的子像素發(fā)光時間,實現(xiàn)視覺上的256 級灰度即1 667 萬色顯示,以實現(xiàn)高質(zhì)量的顯示畫面。

為實現(xiàn)256 級灰度,將一個像素點的掃描時間分成19 個單位時間t,8 bit 灰度數(shù)據(jù)q[7: 0]從高位到低位所占的時間分別為8t,4t,2 t,t,t,t,t,t.為使不同位顯示時間成一定比例,從q[3]開始引入t /2 的消影時間,q[2]引入t /4 的消影時間,d[1]引入t /8 的消影時間,d[0]引入t /16 的消影時間,如圖2 所示,由控制電路產(chǎn)生消隱信號進行消隱。由此計算 屏亮度百分比λ = ( 8 + 4 + 2 + l + 1 /2 + 1 /4 + 1 /8 + 1 /16 ) /19 = 83. 9%.

1. 3 控制器

利用 的處理速度和數(shù)據(jù)寬度高的優(yōu)勢以及芯片中可利用的豐富資源,為分辨率為480 × RGB ×640 的 顯示屏設(shè)計了外圍驅(qū)動控制電路。其主要作用是向OLED 顯示屏提供掃描控制信號及進行OLED 顯示數(shù)據(jù)的數(shù)字信號處理。

根據(jù)OLED 顯示屏周邊接口的結(jié)構(gòu)和特性,利用 芯片為其設(shè)計外圍的驅(qū)動控制系統(tǒng),為OLED 屏提供控制信號以及傳輸所要顯示的數(shù)據(jù)信號。

如圖3 所示,經(jīng)解碼后的圖像數(shù)據(jù)存入FIFO( First In First Out) 緩存中,在主時鐘的控制下,F(xiàn)IFO中的圖像數(shù)據(jù)將被載入到一個16 × 8 的數(shù)據(jù)裝載寄存器,當這16 個8 位數(shù)據(jù)裝載寄存器裝滿時,將被一個144 位的鎖存器鎖存,等待進入D/A 轉(zhuǎn)換模塊; 同時FPGA 控制器還將在主時鐘的控制下產(chǎn)生行列移位時鐘和行列掃描起始脈沖,產(chǎn)生的時鐘和脈沖進入DC -DC 轉(zhuǎn)換模塊。

圖3 FPGA 控制器結(jié)構(gòu)框圖
圖3 FPGA 控制器結(jié)構(gòu)框圖。

1. 4 各種控制信號周期及頻率

為使FPGA 控制器能工作于一個合理的驅(qū)動頻率以及提高顯示屏的亮度,在結(jié)構(gòu)上采用標準單元塊的形式。對于分辨率480 × 3 × 640 的顯示屏,以8 × 16個顯示像素?zé)艄軜?gòu)成一個單元塊,將480 × 3 行分組組合成為90 個塊( Block) ,即每塊由一組列信號同時驅(qū)動16 行像素。設(shè)計列掃描驅(qū)動電路時,將640 列電極分組組合成為80 個塊( Block) ,每個塊并行驅(qū)動8 列像素。

OLED 顯示屏的刷新頻率是60 Hz /s,即顯示一幀圖像的時間為1 /60 s,設(shè)為T,所以,行掃描起始信號stx 的周期T 為16 667 μs,占空比為1∶ 90; 因為OLED顯示屏480 × 3 行電極分組組合成為90 個Block,所以每一塊的選通時間為T /90,即185. 185 μs.而cpx 和cpbx 是一對反相不交疊的脈沖信號,占空比為50%,在脈沖信號的高電平和低電平時,都有一個Block 行像素被選通,即在cpx 和cpbx 一個周期內(nèi)有兩個Block 行像素被選通,所以行掃描驅(qū)動脈沖cpx 和cpbx的周期為T /45,即370. 370 μs.

同理,OLED 顯示屏的列被分為80 個Block,每個列Block 的選通時間為2. 315 μs,列掃描起始信號sty的周期為185. 185 μs,占空比為1 ∶ 80.列驅(qū)動脈沖cpy 和cpby 亦是一對反相不交疊的脈沖信號,占空比為50%,在脈沖信號的高電平和低電平時,都有一個Block 被選通。由于每個列Block 的選通時間為2. 315 μs,所以列掃描驅(qū)動脈沖cpy 和cpby 的周期為4. 630 μs.

在每個列Block 選通期間,從FIFO 中并行讀出的8 個8 bit 數(shù)據(jù)進入數(shù)據(jù)鎖存器鎖存。在每個BLOCK選通期間都將進行一次數(shù)據(jù)的鎖存,所以數(shù)據(jù)鎖存信號Lock 的周期為2. 315 μs.因為當16 個8 位的數(shù)據(jù)裝載寄存器都載滿數(shù)據(jù)的時候才進行這144 個數(shù)據(jù)的鎖存,所以16 位移位寄存器時鐘clk _reg 的周期為0. 145 μs.從FIFO 中讀出數(shù)據(jù)的速度必須和向數(shù)據(jù)裝載寄存器中裝載數(shù)據(jù)的速度一致,則FIFO 的讀時鐘clk _ fifo 的周期也為0. 145 μs.對0. 15 μs( 6. 896 MHz) 進行近似為7 MHz,所以令系統(tǒng)的基本時鐘為14 MHz,由FPGA 外部晶振產(chǎn)生。讀時鐘為基本時鐘的二分頻。

1. 5 FPGA 工作流程

FPGA 處理器是設(shè)計的核心部分,其工作流程為,在每個clk_fifo 時鐘周期下,從8 個FIFO 緩存中并行讀出8 個8 bit 像素數(shù)據(jù),在時鐘clk_reg 上升沿到來時, 16 位移位寄存器發(fā)生移位,它的輸出端接16 個8位數(shù)據(jù)裝載寄存器的片選端,這樣16 個8 位數(shù)據(jù)裝載寄存器逐個被選通,此時這些數(shù)據(jù)就可以載入到16 個8 位數(shù)據(jù)裝載寄存器中,這16 個8 位寄存器的輸出端接在144 位鎖存器的輸入端上。16 個時鐘clk_reg 上升沿過后, 16 個8 位數(shù)據(jù)裝載寄存器都將依次被裝載滿,此時數(shù)據(jù)鎖存信號Lock 到達,將144 個數(shù)據(jù)鎖存到144 位數(shù)據(jù)鎖存器中,然后這些數(shù)據(jù)進入到DA 轉(zhuǎn)換模塊,轉(zhuǎn)換成16 路模擬量,送至OLED 顯示屏,完成一個Block 數(shù)據(jù)的載入。

在列掃描驅(qū)動脈沖cpy 和cpby 的控制下,80 個Block 依次被選通,在每一Block 被選通期間,都將進行一次144 個數(shù)據(jù)的移位寄存和鎖存,當80 個Block都鎖存完之后,一行數(shù)據(jù)的載入也就完成了。當?shù)谝恍械?0 個Block 數(shù)據(jù)顯示完畢后,列掃描起始信號sty過來,又開始從第一列掃描,與此同時,在行掃描驅(qū)動脈沖cpx 和cpbx 的作用下,第二行像素被選通,所以,這時將進行第二行的1 到80 個Block 的數(shù)據(jù)載入,以此類推,直到90 行數(shù)據(jù)都顯示完畢之后,行掃描起始信號stx 到來,重新選通第一行,循環(huán)往復(fù),一幀幀地顯示數(shù)據(jù)。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉