新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 單對象人臉識(shí)別特點(diǎn)及技術(shù)研究

單對象人臉識(shí)別特點(diǎn)及技術(shù)研究

作者: 時(shí)間:2011-12-19 來源:網(wǎng)絡(luò) 收藏

1 引 言

本文引用地址:http://2s4d.com/article/187083.htm

隨著計(jì)算機(jī)網(wǎng)絡(luò)和通信技術(shù)的發(fā)展,信息安全、知識(shí)產(chǎn)權(quán)保護(hù)和身份認(rèn)證等問題成了一個(gè)重要而緊迫的研究課題。身份認(rèn)證是保證系統(tǒng)安全的必要前提,在多種不同的安全領(lǐng)域都需要準(zhǔn)確的身份認(rèn)證。傳統(tǒng)的身份證、智能卡、密碼等身份認(rèn)證方法存在攜帶不便、容易遺失、不可讀或密碼易被破解等諸多問題?;?a class="contentlabel" href="http://2s4d.com/news/listbylabel/label/人臉識(shí)別">人臉識(shí)別技術(shù)的身份認(rèn)證方法與傳統(tǒng)的方法相比,具有更好的安全性、可靠性和有效性,因此正越來越受到人們的重視,并逐漸進(jìn)入社會(huì)生活的各個(gè)領(lǐng)域。

技術(shù)具有廣泛的應(yīng)用前景,可以應(yīng)用到多種不同的安全領(lǐng)域,因其識(shí)別特征的獨(dú)特性、惟一性和相對穩(wěn)定性,逐漸成為一非常熱門的研究課題。許多典型的算法和應(yīng)用系統(tǒng)都是針對標(biāo)準(zhǔn)或特定的人臉數(shù)據(jù)庫,利用庫內(nèi)人臉進(jìn)行訓(xùn)練,并在相同的庫中實(shí)現(xiàn)人臉識(shí)別。但在軟件保護(hù)、計(jì)算機(jī)安全等特殊應(yīng)用中,身份認(rèn)證僅針對單個(gè)進(jìn)行人臉識(shí)別,現(xiàn)有的人臉識(shí)別方法并不能勝任這樣的識(shí)別任務(wù)。為此,本文針對單人臉識(shí)別的特點(diǎn),討論了單人臉檢測和識(shí)別的關(guān)鍵技術(shù),在此基礎(chǔ)上提出了一種單對象人臉識(shí)別算法,實(shí)驗(yàn)結(jié)果證明了該方法的有效性。

2 單對象人臉識(shí)別的特點(diǎn)

與典型的人臉識(shí)別相比,單對象人臉識(shí)別有以下4個(gè)方面的特點(diǎn):

應(yīng)用領(lǐng)域 人臉識(shí)別的應(yīng)用領(lǐng)域很廣,如刑偵破案、證件核對、保安監(jiān)控等,而單對象人臉識(shí)別主要應(yīng)用在軟件保護(hù)、計(jì)算機(jī)安全鎖、特定對象追蹤等領(lǐng)域。

識(shí)別系統(tǒng)的目標(biāo) 單對象人臉識(shí)別的最終目標(biāo)是系統(tǒng)必須具有高度的安全性和可靠性,即識(shí)別錯(cuò)誤率趨于0。雖然降低識(shí)別錯(cuò)誤率的同時(shí)識(shí)別率也會(huì)降低,但可以通過提示用戶調(diào)整姿態(tài)(如注視攝像頭等)加以改善。

膚色模型 由于單對象人臉識(shí)別僅針對特定的對象,所以人臉檢測的膚色模型可采用自適應(yīng)的方法調(diào)整膚色范圍。

分類方法 單對象人臉識(shí)別不存在人臉數(shù)據(jù)庫,常用的最小距離分類法不能夠正確識(shí)別特定的對象,只能用閾值作為判據(jù)。因此,閾值的選取十分重要,閾值過大則容易出現(xiàn)錯(cuò)判,存在安全隱患;而閾值過小又會(huì)影響識(shí)別效率。

3 人臉的檢測和歸一化

人臉檢測是人臉識(shí)別的前提。對于給定的圖像,人臉檢測的目的在于判斷圖像中是否存在人臉,如果存在,則返回其位置和空間分布。利用人臉膚色和面部特征,將人臉檢測分為兩個(gè)階段:外臉檢測和內(nèi)臉定位。外臉檢測主要利用人臉膚色進(jìn)行初步的臉區(qū)檢測,分割出膚色區(qū)域;內(nèi)臉檢測是在外臉區(qū)域中利用面部幾何特征進(jìn)行驗(yàn)證和定位。

3.1 外臉檢測

外臉檢測的任務(wù)是將待檢圖像中可能的人臉區(qū)域找出來并加以標(biāo)記,其步驟如下:

(1)根據(jù)人類膚色在色彩空間中存在區(qū)域性的特點(diǎn),將可能為人臉的像素檢測出來。為更好地利用膚色特征,同時(shí)選用HSI和YcbCr兩種色彩空間對圖像進(jìn)行二值化處理,膚色范圍限定在H∈[0,46],S∈[0.10,0.72],Cb∈[98,130],Cr∈[128,170]內(nèi)。將滿足條件的像素標(biāo)記為膚色像素,其余的均為非膚色像素。

(2)去噪處理。在以每一個(gè)膚色點(diǎn)為中心的5×5鄰域內(nèi)統(tǒng)計(jì)膚色像素的個(gè)數(shù),超過半數(shù)時(shí)中心點(diǎn)保留為膚色,否則認(rèn)為是非膚色。

(3)將二值圖像中的膚色塊作區(qū)域歸并,并對目標(biāo)區(qū)域進(jìn)行比例、結(jié)構(gòu)分析,過濾掉不可能的人臉區(qū)域。目標(biāo)區(qū)域的高度/寬度比例限定在0.8~2.0。

3.2 內(nèi)臉檢測和定位

將包含眼、眉、鼻和嘴的區(qū)域稱為內(nèi)臉區(qū)域。內(nèi)臉區(qū)域能夠很好地表達(dá)人臉特征,且不易受背景、頭發(fā)等因素的干擾,因此內(nèi)臉區(qū)域的檢測和定位對后續(xù)的特征提取和識(shí)別至關(guān)重要。

在外臉區(qū)域的上半部,對二值圖像進(jìn)行水平方向和垂直方向的投影,確定兩個(gè)包含黑點(diǎn)的矩形區(qū)域作為雙眼的大致區(qū)域。在確定的兩個(gè)區(qū)域中,對黑點(diǎn)進(jìn)行區(qū)域膨脹,可以得到眼睛的基本輪廓和左石眼角,黑點(diǎn)坐標(biāo)的平均值作為瞳孔的位置。

設(shè)左右瞳孔的坐標(biāo)分別為(Lx,Ly)和(Rx,Ry),兩個(gè)瞳孔之間的距離為d,根據(jù)人臉的幾何特征,我們將內(nèi)臉區(qū)域定義為:寬度=-d×1.6,高度=-d×1.8,左上角坐標(biāo)為(Lx-d×0.3,(Ly+Ry)/2-(-d)× 0.3)。實(shí)驗(yàn)表明,該區(qū)域能夠很好地表達(dá)人臉特征。

3.3 內(nèi)臉區(qū)域的歸一化

由于各待測圖像中的人臉大小具有很大的隨機(jī)性,因此,有必要對內(nèi)臉區(qū)域進(jìn)行歸一化操作。人臉歸一化是指對內(nèi)臉區(qū)域的圖像進(jìn)行縮放變換,得到統(tǒng)一大小的標(biāo)準(zhǔn)圖像,實(shí)驗(yàn)中,我們規(guī)定標(biāo)準(zhǔn)圖像的大小為128×128。歸一化處理,保證了人臉大小的一致性,體現(xiàn)了人臉在圖像平面內(nèi)的尺寸不變性。

圖1是一個(gè)人臉檢測和歸一化的例子,其中的原始圖像來自實(shí)驗(yàn)室現(xiàn)場拍攝。


4 人臉特征提取及DWT-DCT平均臉

對歸一化的人臉圖像,采用小波變換與DCT相結(jié)合的方法提取人臉特征。首先對人臉圖像進(jìn)行3層小波分解,取低頻子圖像LL3作為人臉特征提取的對象,從而獲得每幅訓(xùn)練樣本或測試樣本的低頻子圖像;然后對低頻子圖像進(jìn)行離散余弦變換(DCT),DCT系數(shù)個(gè)數(shù)與子圖像的大小相等(即256),由于圖像DCT變換,能量集中在低頻部分,因此只取其中的136個(gè)低頻系數(shù)作為特征向量。

為了使測試樣本與訓(xùn)練樣本具有可比性,提取全部訓(xùn)練樣本的特征向量,計(jì)算所有訓(xùn)練樣本的平均特征,構(gòu)成DWT-DCT平均臉,即:


其中N為訓(xùn)練樣本數(shù),xk,i表示第i個(gè)樣本的第k個(gè)特征向量,mk為平均臉的第k個(gè)特征向量,k=1,2,…,136。


上一頁 1 2 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉