新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 基于TOPSwitCh的電磁兼容性設(shè)計(jì)

基于TOPSwitCh的電磁兼容性設(shè)計(jì)

作者: 時(shí)間:2006-06-28 來(lái)源:網(wǎng)絡(luò) 收藏
O 引言
隨著現(xiàn)代逆變技術(shù)的發(fā)展.開(kāi)關(guān)電源正向著高頻化、小型化的方向發(fā)展:在此基礎(chǔ)上開(kāi)發(fā)出的三端隔離、脈寬調(diào)制型反激式單片開(kāi)關(guān)電源,集成了高壓M0SFET、振蕩器、脈寬調(diào)制器、閉環(huán)控制電路以及限流、過(guò)熱保護(hù)功能的集成芯片。以其為核心構(gòu)成的單片開(kāi)關(guān)電源外圍電路簡(jiǎn)單,輸入電壓范圍寬,達(dá)到85~265V,電能轉(zhuǎn)換效率達(dá)到90%,已被廣泛應(yīng)用于中小功率開(kāi)關(guān)電源中。
TOPSwitch單片電源應(yīng)用頻率一般在20kHz以上,這樣對(duì)前級(jí)電路(通常是電網(wǎng))帶來(lái)很大的電磁干擾問(wèn)題,危及其他電氣設(shè)備的正常運(yùn)行;而且其本身產(chǎn)生的干擾直接危害到電子設(shè)備的正常工作。為此必須對(duì)電路進(jìn)行(EMC),使電磁干擾問(wèn)題限制在允許的范圍內(nèi)。
本文運(yùn)用TOP224Y構(gòu)成一款30W反激變換電路,對(duì)其進(jìn)行了分析,并在多個(gè)方面實(shí)施EMC優(yōu)化,實(shí)驗(yàn)結(jié)果表明文中分析的有效性,為反激變換電路的EMC設(shè)汁提供了一定的理論根據(jù)。


1 分析
根據(jù)國(guó)際電工委員會(huì)(IEC)定義,電磁兼容性是電子設(shè)備的一種功能,電子設(shè)備在電磁環(huán)境中能完成其功能,而不產(chǎn)生不能容忍的干擾。解決EMC問(wèn)題,主要考慮3個(gè)要素,即噪聲源、耦合途徑、噪聲接收機(jī)。因此,電磁兼容沒(méi)計(jì)的任務(wù)就是消弱千擾源的能量,隔離或減弱噪聲耦合途徑及提高設(shè)備對(duì)電磁干擾的抵抗能力。
1.1 共模、差模電路模型分析
單片開(kāi)關(guān)電源的集成度很高,已經(jīng)通過(guò)合理的將引線(xiàn)電感和寄生電容參數(shù)減小到比較小的水平。電路的共模電磁干擾主要是漏一源電壓和輸出整流管反向恢復(fù)過(guò)程產(chǎn)生的,由于高頻變壓器的分布電容以及芯片對(duì)地分布電容的影響,高頻電流不能完全抵消,形成共模干擾,其電路模型如圖1所示。這種共模干擾可以通過(guò)EMI濾波器的共扼電感和Y電容提供高頻電流對(duì)地泄放通道進(jìn)行抑制。差模干擾電路模型如圖2所示,也可以通過(guò)EMI濾波器的X電容進(jìn)行抑制。

1.2 高頻變壓器噪聲
高頻變壓器是開(kāi)關(guān)電源中實(shí)現(xiàn)能量?jī)?chǔ)存、隔離輸出、電壓變換的重要元件,同時(shí)它的漏感和分布電容對(duì)電路的性能帶來(lái)不可忽略的影響。其等效電路模型如圖3所示。


當(dāng)不考慮變壓器的漏感以及開(kāi)關(guān)動(dòng)作時(shí)間時(shí),高頻工作下的MOSFET產(chǎn)生的波形是一個(gè)標(biāo)準(zhǔn)的方波,如圖4所示。

而實(shí)際變壓器制作中,繞組漏感是不可避免的,由于漏感的存在,當(dāng)開(kāi)關(guān)閉合時(shí)(ton)原邊漏感儲(chǔ)存了一定的能量(與漏感大小和開(kāi)關(guān)頻率有關(guān)),當(dāng)開(kāi)關(guān)關(guān)斷時(shí)(從ton到toff)儲(chǔ)存在原邊漏感中的能量釋放,使得開(kāi)關(guān)器件的兩端出現(xiàn)電壓關(guān)斷尖峰,疊加在直流高壓V1和感應(yīng)反射電壓VOR上,可使MOSFET的漏極電壓超過(guò)700V,影響開(kāi)關(guān)工作的可靠性甚至損壞TOPSwitch??紤]變壓器漏感時(shí)實(shí)際電路的波形如圖5所示。

1.3 輸出整流二極管的尖峰干擾
二極管導(dǎo)通時(shí),在P區(qū)和N區(qū)分別有少數(shù)載流子電子和空穴導(dǎo)電,當(dāng)突然加反向電壓時(shí),存儲(chǔ)電荷在反向電場(chǎng)作用下被復(fù)合,形成反向恢復(fù)電流。由于變壓器次級(jí)漏感、引線(xiàn)電感及二極管的結(jié)電容,在關(guān)斷電壓上疊加了一個(gè)衰減振蕩電壓,形成了關(guān)斷電壓尖峰,如圖5所示。對(duì)此可以通過(guò)外接RC吸收電路抑制二極管電荷存儲(chǔ)效應(yīng)所產(chǎn)生的浪涌電流。
電磁干擾有一定的標(biāo)準(zhǔn),目前被世界廣泛采用的是歐洲的EMC標(biāo)準(zhǔn),對(duì)于開(kāi)關(guān)電源電路可以應(yīng)用EN55022標(biāo)準(zhǔn)曲線(xiàn),如圖6中虛線(xiàn)所示。圖6中上面一條曲線(xiàn)是為考慮EMC設(shè)計(jì)時(shí)的傳導(dǎo)E-MI測(cè)試曲線(xiàn),可以看到干擾強(qiáng)度嚴(yán)重超過(guò)標(biāo)準(zhǔn),必須對(duì)電路進(jìn)行相應(yīng)的抗干擾設(shè)計(jì)。圖7是參加傳導(dǎo)EMI測(cè)試的反激變換電路,圖7中虛線(xiàn)部分是考慮EMC問(wèn)題而添加的電路部分。


2 優(yōu)化EMC設(shè)計(jì)
2.1 輸入側(cè)EMC設(shè)計(jì)

一般開(kāi)關(guān)電源與電網(wǎng)直接相連,高頻開(kāi)關(guān)的兩端產(chǎn)生浪涌電壓,流過(guò)一定的浪涌電流,這個(gè)電流通過(guò)高頻變壓器原邊、直流電容和開(kāi)關(guān)器件形成回路,產(chǎn)生高頻輻射干擾;同時(shí)高頻電流流過(guò)一次側(cè)整流電路,產(chǎn)生的脈沖電壓疊加在電網(wǎng)電壓上,形成差模干擾,對(duì)同一線(xiàn)路上的其他設(shè)備帶來(lái)干擾。如圖8所示,在開(kāi)關(guān)電源的電源輸入端安裝電源濾波器可以起到抑制共模和差模干擾的作用。

從濾除電磁干擾的角度,EMI濾波器實(shí)質(zhì)是一個(gè)低通濾波器,對(duì)直流至截止頻率(工頻)的信號(hào)以最小衰減通過(guò),而對(duì)電磁干擾的頻帶給以盡可能高的衰減,通帶與阻帶之間的過(guò)渡帶應(yīng)盡量地陡。
由圖8推導(dǎo)分別得到共模、差模的插入損耗為


按前文的分析,理想EMI濾波器應(yīng)使共模插入損耗(ILCM)最大,而差模插入損耗(ILDM)最小,從圖6可以看出,EMI濾波器在10MHz時(shí)噪聲超出標(biāo)準(zhǔn)最大,達(dá)到35dB左右,所以,共模噪聲的衰減必須達(dá)到40dB,設(shè)計(jì)時(shí)令Rs/RL=50Ω/50Ω,衰減損耗按60dB設(shè)計(jì),則有


而且根據(jù)開(kāi)關(guān)電源產(chǎn)生共模、差模干擾的特點(diǎn),將整個(gè)頻率范圍劃分為3個(gè)部分,即
0.15~0.5MHz 差模干擾為主;
0.5~5MHz 差、共模干擾共存;
5~30MHz 共模干擾為主。
對(duì)照?qǐng)D6,發(fā)現(xiàn)原電路差模、共模干擾全面超標(biāo),但可以看出5~30MHz,頻率范圍內(nèi),出現(xiàn)兩個(gè)尖峰,應(yīng)由共模干擾引起,所以,在優(yōu)化設(shè)計(jì)EMC時(shí)必須加強(qiáng)共模的抑制,即可增加CY的容量來(lái)實(shí)現(xiàn)。
考慮以上各點(diǎn)因素,取Cx=0.47μF,CY=0.22μF,L=22mH,加入EMI濾波器后電路經(jīng)過(guò)傳導(dǎo)測(cè)試符合EN55022標(biāo)準(zhǔn),如圖6中下方一條曲線(xiàn)所示。
2.2 變壓器原邊關(guān)斷尖峰電壓抑制
單片開(kāi)關(guān)電源內(nèi)部集成的MOSFET的高速開(kāi)斷,使得高頻變壓器原邊漏感中儲(chǔ)存的能量釋放,在變壓器原邊疊加一個(gè)電壓尖峰,使高頻方波波形畸變,甚至由于尖峰電壓全部加在TOPSwitch的D端(漏極)上,可能使芯片損壞。為抑制尖峰電壓,在變壓器原邊繞組并聯(lián)由瞬態(tài)電壓抑制器(TVS)和超快恢復(fù)二極管(SRD)相串聯(lián)組成的吸收電路。當(dāng)MOSFET關(guān)斷時(shí),TVS反向擊穿,SRD導(dǎo)通,漏感中的能量沿并聯(lián)回路釋放,使得MOS-FET兩端的電壓限定在TVS的擊穿電壓之內(nèi)。結(jié)合圖5的波形可以看出,在開(kāi)關(guān)管關(guān)斷瞬間,關(guān)斷尖峰電壓疊加在TOPswitch的D端上,使VD達(dá)到600V左右(直流高壓450V加上TVS的擊穿電壓200V),TVS鉗位電路導(dǎo)通,漏感能量沿并聯(lián)通路釋放,而且由于雜散電容和初級(jí)電感形成了諧振電路,產(chǎn)生衰減振蕩,之后,VD回落并穩(wěn)定在直流高壓水平上。
2.3 輸出二極管關(guān)斷尖峰電壓抑制
反激變換電路+5V主輸出電路整流二極管選用SRl640超快恢復(fù)二極管(共陰對(duì)管),其反向恢復(fù)時(shí)間trr=35ns,平均整流電流Id=10A,反向峰值電壓VRM=200V。電路工作頻率在100kHz(周期10μs),選用超快恢復(fù)二極管可有效降低由于反向恢復(fù)電流而形成的關(guān)斷電壓尖峰。
另外,并聯(lián)RC電路吸收高頻紋波,100Ω的電阻同時(shí)作為假負(fù)載避免空載時(shí)輸出電壓升高。同時(shí)電路增加了一階濾波器,其傳遞函數(shù)為在轉(zhuǎn)折頻率后以-40dB衰減高頻諧波分量,如圖9所示。

由于實(shí)際應(yīng)用中一階LC濾波會(huì)在截止頻率附近產(chǎn)生振蕩,所以,要合理選取L及C的參數(shù),使其截止頻率fc小于輸出紋波的最低次諧波分量頻率。
如果輸出電壓紋波達(dá)不到要求,可以在輸出側(cè)加一級(jí)共扼扼流圈以抑制共模干擾傳導(dǎo)至輸出端。
2.4 其他改進(jìn)措施
1)采用變壓器屏蔽技術(shù),盡量減少其漏感引起的對(duì)外輻射噪聲;
2)開(kāi)關(guān)管兩端并接RC網(wǎng)絡(luò),減緩漏源電壓的上升斜率,以減小dv/dt對(duì)控制端的影響;
3)對(duì)PCB工藝進(jìn)行改進(jìn),使其主電路與控制電路分開(kāi),對(duì)電磁輻射源和電磁敏感器件要注意隔離,以及合理的接地。

3 實(shí)驗(yàn)結(jié)果
經(jīng)過(guò)以上EMC優(yōu)化設(shè)計(jì),TOP224Y設(shè)計(jì)的的反激變換電路實(shí)現(xiàn)輸出電壓調(diào)整率△Vo/Vo=0.1/5=2%(主輸出+5V,滿(mǎn)載20W,連續(xù)72h帶載),達(dá)到了預(yù)期設(shè)計(jì)的要求。圖10是輸出電壓直流分量與其交流分量波形。

4 結(jié)語(yǔ)
由于電磁兼容已經(jīng)成為開(kāi)關(guān)電源產(chǎn)業(yè)必須考慮的問(wèn)題,所以,考慮EMC問(wèn)題要有一定的設(shè)計(jì)理論依據(jù)。本文就噪聲干擾產(chǎn)生的不同途徑,給出抑制差模、共模干擾的濾波器模型,并結(jié)合原電路傳導(dǎo)EMI測(cè)試曲線(xiàn)存在的問(wèn)題推算出電路的參數(shù),改進(jìn)后的電路再次進(jìn)行傳導(dǎo)EMI測(cè)試,證實(shí)了插入濾波器的有效性。
在此基礎(chǔ)上,本文還提出了一些改進(jìn)噪聲干擾的措施,對(duì)輸出電壓的紋波幅值和開(kāi)關(guān)漏源電壓峰值起到一定的限制作用。



評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉