新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 電力線通信技術(shù)原理及應(yīng)用

電力線通信技術(shù)原理及應(yīng)用

作者: 時(shí)間:2011-01-18 來源:網(wǎng)絡(luò) 收藏

  
信道衰減特性對(duì)于數(shù)字通信的效果有著重要影響。中壓線路的衰減比低壓線路的衰減嚴(yán)重,有實(shí)驗(yàn)表明,平均每100m幅值衰減可達(dá)到8dB~11dB。同時(shí),中壓線路的衰減也表現(xiàn)出明顯的頻率選擇性,在一些頻率點(diǎn)或者頻段,會(huì)出現(xiàn)深度的傳輸衰減。由大量分支點(diǎn)造成的多徑效應(yīng)被認(rèn)為是一個(gè)主要原因。實(shí)驗(yàn)證明,在這些深度衰減的頻段上,很難實(shí)現(xiàn)成功的通信連接,必須在實(shí)際通信系統(tǒng)中予以回避。

中壓電力線平均噪聲功率在-60~-70dBm/Hz左右。其中,由多種低功率噪聲的疊加而成的有色背景噪聲功率一般在-60~-70dBm/Hz之間,在一些頻段可低于-80dBm/Hz,其整體隨頻率增高而減弱,且功率譜變化較慢,一般為分鐘甚至小時(shí)量級(jí);主要由通信帶寬內(nèi)的廣播電臺(tái)等其它無線通信信號(hào)造成的窄帶噪聲,平均占用2k~4kHz的帶寬,功率較高,較背景噪聲高出約30~50dBm/Hz,該類干擾一般長時(shí)穩(wěn)定存在;對(duì)通信效果影響最大的是沖激噪聲,該類噪聲隨機(jī)產(chǎn)生,持續(xù)時(shí)間很短,一般為幾十或者幾百毫秒,絕大部分功率高于背景噪聲10~30dBm/Hz,當(dāng)沖激噪聲發(fā)生時(shí),噪聲頻段內(nèi)的數(shù)據(jù)傳輸將可能出現(xiàn)嚴(yán)重的突發(fā)性誤碼。圖3為我國農(nóng)村中壓電力線在40k~560kHz頻段內(nèi)的典型噪聲頻譜。

本文引用地址:http://2s4d.com/article/179962.htm


圖3國內(nèi)農(nóng)村中壓線路噪聲特性曲線(40k-560kHz)

中壓PLC關(guān)鍵技術(shù)與應(yīng)用系統(tǒng)

中壓電力線信道是一個(gè)很不穩(wěn)定的高噪聲、強(qiáng)衰減的傳輸通道,高效可靠的調(diào)制編碼技術(shù)對(duì)于電力線通信非常重要。目前,國內(nèi)外針對(duì)不同通信場(chǎng)景對(duì)速率、可靠性的要求,對(duì)各種調(diào)制技術(shù)在中壓PLC中的應(yīng)用進(jìn)行了大量的研究和測(cè)試。

根據(jù)對(duì)中壓信道特性的研究,噪聲功率一般隨頻率升高而降低,但同時(shí)多徑效應(yīng)所引起的深衰落也在高頻端更為嚴(yán)重,因此,在選擇PLC載波頻率時(shí),需要根據(jù)實(shí)際線路情況在二者之間進(jìn)行折衷。國內(nèi)外的大量實(shí)踐證明,5k~50kHz的載波頻率對(duì)于多數(shù)中壓配電自動(dòng)化系統(tǒng)是比較合適的。在配電自動(dòng)化的應(yīng)用中,多為單向數(shù)據(jù)傳輸,且主要要求有較高的可靠性,對(duì)實(shí)時(shí)性的要求不是很高,因此,一般都選取較低的傳輸速率,一般在10bps~1000bps之間。在調(diào)制技術(shù)方面,目前使用最多的是窄帶調(diào)制方法,如ASK,F(xiàn)SK或者CPSK都得到了比較廣泛的應(yīng)用。近年來為在強(qiáng)噪聲干擾的環(huán)境下實(shí)現(xiàn)數(shù)據(jù)傳輸,跳頻、直接序列擴(kuò)頻、Chirp跳頻等擴(kuò)頻通信技術(shù)也被引入到中壓PLC系統(tǒng)中。

在利用中壓PLC實(shí)現(xiàn)數(shù)據(jù)網(wǎng)絡(luò)接入的場(chǎng)景中,由于通信速率較高,對(duì)所采用的調(diào)制編碼技術(shù)的信道利用率,對(duì)突發(fā)噪聲和脈沖噪聲的規(guī)避或者對(duì)抗能力都提出了較高的要求。目前,在中、低速率的接入網(wǎng)研究中,BPSK、QPSK等調(diào)制方法得到了應(yīng)用,為了對(duì)抗頻率選擇性衰落的信道特性,一般都會(huì)同時(shí)應(yīng)用高階的差錯(cuò)控制編碼,這同該調(diào)制方法本身不高的頻帶利用率相結(jié)合,使得系統(tǒng)的通信速率會(huì)受到較大限制。

CDMA技術(shù)可以有效的對(duì)抗傳輸信道中的窄帶噪聲等干擾,但是在CDMA系統(tǒng)中所要求的較高處理增益,在存在嚴(yán)重的頻率選擇性衰落的電力線信道上很難達(dá)到,所以CDMA系統(tǒng)的優(yōu)勢(shì)在PLC中并不能得到完全的發(fā)揮,一般認(rèn)為,速率超過1Mbps,它就不再適用。對(duì)于更高傳輸速率的接入網(wǎng)絡(luò),多載波正交頻分復(fù)用(OFDM)技術(shù)被認(rèn)為是最為合適的技術(shù)方案。OFDM以多個(gè)相互正交的載波對(duì)數(shù)據(jù)進(jìn)行調(diào)制,將串行數(shù)據(jù)流變換為并行處理。其擁有接近香農(nóng)限的高信道利用率;并且可以有效的對(duì)抗多徑效應(yīng),解決碼間串?dāng)_問題,也具備較強(qiáng)的抗突發(fā)干擾的能力;另外,在信道分配上,OFDM也提供了靈活操作的可能性,得以規(guī)避通信帶寬內(nèi)深度衰落的頻帶;OFDM技術(shù)在高速PLC中應(yīng)用廣泛。

在MAC層協(xié)議中,目前的研究表明,帶有沖突避免的有競(jìng)爭(zhēng)CSMA/CA協(xié)議,基于TDMA的無競(jìng)爭(zhēng)預(yù)約協(xié)議,以及將兩者相結(jié)合的混合型協(xié)議,比較適合于中壓寬帶接入網(wǎng)絡(luò),并且已在實(shí)際系統(tǒng)中得到應(yīng)用。

總體而言,PLC應(yīng)用系統(tǒng)經(jīng)過了模擬——單片機(jī)集成電路——現(xiàn)代數(shù)字信號(hào)處理技術(shù)的發(fā)展過程。中壓PLC系統(tǒng)起點(diǎn)較高,目前已廣泛采用DSP器件和專用芯片的解決方案。上世紀(jì)90年代中期以后,高速PLC芯片產(chǎn)業(yè)發(fā)展迅速,國外多家公司都研究開發(fā)了相應(yīng)產(chǎn)品。

在市場(chǎng)的推動(dòng)下,北美的中壓PLC寬帶接入應(yīng)用系統(tǒng)發(fā)展迅速。Amperion公司研究了發(fā)變電站至變壓器之間的中壓電力線上的高速數(shù)據(jù)傳輸技術(shù),以及MV-PLC與LV-PLC為一端、光纖和無線網(wǎng)絡(luò)為另一端的接口技術(shù),從而提供了從中壓傳輸?shù)降蛪簜鬏敚瑥膽敉饨尤氲綉魞?nèi)組網(wǎng)的端到端PLC解決方案。目前,該系統(tǒng)的主要技術(shù)已經(jīng)通過實(shí)驗(yàn)室試驗(yàn),Amperion公司及合作伙伴正極力推動(dòng)該類接入網(wǎng)絡(luò)的商業(yè)進(jìn)程。

近年來受到廣泛關(guān)注的MV-PLC接入在農(nóng)村地區(qū)的應(yīng)用,目前主要還停留在實(shí)驗(yàn)系統(tǒng)的階段。文獻(xiàn)[1]中所介紹的接入系統(tǒng)物理層采用BPSK調(diào)制方法,利用BCH編碼、交織等技術(shù)對(duì)抗信道衰減和突發(fā)噪聲,MAC層使用CSMA/CD和TDMA的混合協(xié)議,在南非的郊區(qū)和低人口密度地區(qū)的中壓電力線網(wǎng)絡(luò)傳輸實(shí)驗(yàn)中實(shí)現(xiàn)了Internet接入,傳輸距離達(dá)到了4km,但未能達(dá)到VoIP所要求的QoS保證。文獻(xiàn)[2]中,在北美農(nóng)村13.8kV電網(wǎng)上采用基于QPSK調(diào)制的全雙工數(shù)字寬帶通信方案,在17MHz和83MHz頻段上在實(shí)現(xiàn)了2Mbps的TCP/IP連接。

中壓電力線通信技術(shù)在中壓配電自動(dòng)化、城市和農(nóng)村地區(qū)寬帶網(wǎng)絡(luò)接入等方面具有獨(dú)特的優(yōu)勢(shì)和很大的發(fā)展?jié)摿?,如果得到廣泛應(yīng)用,將對(duì)國民經(jīng)濟(jì)的發(fā)展產(chǎn)生積極的促進(jìn)作用。近年來,國內(nèi)外相關(guān)的研究和應(yīng)用都得到了迅速的發(fā)展,有理由相信,隨著相關(guān)技術(shù)的進(jìn)步和成熟,中壓電力線通信會(huì)在信息社會(huì)中扮演日益重要的角色。


上一頁 1 2 下一頁

關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉