新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 電磁屏蔽技術(shù)分析

電磁屏蔽技術(shù)分析

作者: 時間:2011-04-27 來源:網(wǎng)絡(luò) 收藏

討論了,包括原理、材料的性能和應(yīng)用場合、屏蔽的注意事項、屏蔽效能的檢測以及特殊部位的屏蔽措施。

本文引用地址:http://2s4d.com/article/179165.htm

關(guān)鍵詞:屏蔽;屏蔽材料;屏蔽效能

0 引言

近幾年來,隨著電磁兼容工作的開展,電磁屏蔽技術(shù)應(yīng)用得越來越廣泛。為了對電磁屏蔽技術(shù)有更深入的理解,應(yīng)當(dāng)對屏蔽材料的性能和應(yīng)用場合、屏蔽技術(shù)的注意事項、屏蔽效能的檢測以及特殊部位的屏蔽措施等進(jìn)行更深入的探討。

1 電磁屏蔽的技術(shù)原理

電磁屏蔽是電磁兼容技術(shù)的主要措施之一。即用金屬屏蔽材料將電磁干擾源封閉起來,使其外部電磁場強(qiáng)度低于允許值的一種措施;或用金屬屏蔽材料將電磁敏感電路封閉起來,使其內(nèi)部電磁場強(qiáng)度低于允許值的一種措施。

1.1 靜電屏蔽

用完整的金屬屏蔽體將帶正電導(dǎo)體包圍起來,在屏蔽體的內(nèi)側(cè)將感應(yīng)出與帶電導(dǎo)體等量的負(fù)電荷,外側(cè)出現(xiàn)與帶電導(dǎo)體等量的正電荷,如果將金屬屏蔽體接地,則外側(cè)的正電荷將流入大地,外側(cè)將不會有電場存在,即帶正電導(dǎo)體的電場被屏蔽在金屬屏蔽體內(nèi)。

1.2 交變電場屏蔽

為降低交變電場對敏感電路的耦合干擾電壓,可以在干擾源和敏感電路之間設(shè)置導(dǎo)電性好的金屬屏蔽體,并將金屬屏蔽體接地。交變電場對敏感電路的耦合干擾電壓大小取決于交變電場電壓、耦合電容和金屬屏蔽體接地電阻之積。只要設(shè)法使金屬屏蔽體良好接地,就能使交變電場對敏感電路的耦合干擾電壓變得很小。電場屏蔽以反射為主,因此屏蔽體的厚度不必過大,而以結(jié)構(gòu)強(qiáng)度為主要考慮因素。

1.3 交變磁場屏蔽

交變磁場屏蔽有高頻和低頻之分。低頻磁場屏蔽是利用高磁導(dǎo)率的材料構(gòu)成低磁阻通路,使大部分磁場被集中在屏蔽體內(nèi)。屏蔽體的磁導(dǎo)率越高,厚度越大,磁阻越小,磁場屏蔽的效果越好。當(dāng)然要與設(shè)備的重量相協(xié)調(diào)。高頻磁場的屏蔽是利用高電導(dǎo)率的材料產(chǎn)生的渦流的反向磁場來抵消干擾磁場而實現(xiàn)的。

1.4 交變電磁場屏蔽

一般采用電導(dǎo)率高的材料作屏蔽體,并將屏蔽體接地。它是利用屏蔽體在高頻磁場的作用下產(chǎn)生反方向的渦流磁場與原磁場抵消而削弱高頻磁場的干擾,又因屏蔽體接地而實現(xiàn)電場屏蔽。屏蔽體的厚度不必過大,而以趨膚深度和結(jié)構(gòu)強(qiáng)度為主要考慮因素。

2 屏蔽效能計算

屏蔽效能(SE)的定義是:在電磁場中同一地點無屏蔽時的電磁場強(qiáng)度與加屏蔽體后的電磁場強(qiáng)度之比。常用分貝數(shù)(dB)表示。

SE=ARB(1)

式中:A為吸收損耗;

R為反射損耗;

B為多次反射損耗。

2.1 電磁波反射損耗

由于空氣和屏蔽金屬的電磁波阻抗不同,使入射電磁波產(chǎn)生反射作用。而空氣的電磁波阻抗在不同場源和場區(qū)中是不一樣的,分別計算如下。

磁場源近場中的反射損耗R(dB)為

R=20log10{[1.173(μr/fσr)1/2/D]+0.0535D(rr)1/2+0.354}(2)

式中:μr為相對磁導(dǎo)率;

σr為相對電導(dǎo)率;

f為電磁波頻率(Hz);

D為輻射源到屏蔽體的距離(cm)。

電場源近場中的反射損耗R(dB)為

R=362-20log10[(μrf3r)1/2D](3)

電磁場源遠(yuǎn)場中的反射損耗R(dB)為

R=168-10log10rfr)(4)

2.2 電磁波吸收損耗

當(dāng)進(jìn)入金屬屏蔽內(nèi)的電磁波在屏蔽金屬內(nèi)傳播時,由于衰減而產(chǎn)生吸收作用。吸收損耗A(dB)為

A=0.1314drr)1/2(5)

式中:d為屏蔽材料厚度(mm)。

2.3 多次反射損耗

電磁波在屏蔽層間的多次反射損耗B(dB)為

B=20log10{1-〔(ZmZw)/(ZmZw)〕210-0.1A(cos0.23A-jsin0.23A)}(6)

式中:Zm為屏蔽金屬的電磁波阻抗;

Zw為空氣的電磁波阻抗。

當(dāng)A>10dB時,一般可以不計多次反射損耗。

2.4 屏蔽效能計算實例

場源距離不同材料的屏蔽體(厚度0.254mm)30cm遠(yuǎn)的屏蔽效能(dB)計算結(jié)果見表1。表1中近場和遠(yuǎn)場的分界點為λ/2π,λ為電磁場的波長。

表1 場源距離不同材料的屏蔽體(厚度0.254mm)30cm遠(yuǎn)的屏蔽效能dB

頻率/Hz
磁場近場電場近場遠(yuǎn)場磁場近場電場近場遠(yuǎn)場磁場近場電場近場遠(yuǎn)場
603.46  3.22     
1k24.89  14.66     
10k44.92212.73128.7351.50217.50134.00   
150k69.40190.20130.40188.0308.0248.00   
1M97.60185.40141.60391.0479.0435.0088.00176.0
15M205.0245.0225.01102.01143.01123.0174.0215.0
100M418.0426.0422.01425.01434.01430.0342.0350.0

3 屏蔽的注意事項

3.1 屏蔽的完整性

如果屏蔽體不完整,將導(dǎo)致電磁場泄漏。特別是電磁場屏蔽,它利用屏蔽體在高頻磁場的作用下產(chǎn)生反方向的渦流磁場與原磁場抵消而削弱高頻磁場干擾。如果屏蔽體不完整,渦流的效果降低,即屏蔽的效果大打折扣。

3.2 屏蔽材料的屏蔽效能和應(yīng)用場合

電磁屏蔽技術(shù)的進(jìn)展,促使屏蔽材料的形式不斷發(fā)展,而不再局限于單層金屬平板模式,屏蔽效能也不斷提高。應(yīng)用時要特別注意不同的屏蔽材料具有不同的屏蔽效能和應(yīng)用場合。

3.2.1 金屬平板

電子設(shè)備采用金屬平板做機(jī)箱,既堅固耐用,又具有電磁屏蔽作用。其電磁屏蔽效能與金屬平板材料性質(zhì)、電磁場源性質(zhì)、電磁場源與金屬平板的距離、屏蔽體接地狀況等參數(shù)有關(guān)。各種金屬屏蔽材料的性能見表2。

表2 各種金屬屏蔽材料的性能

金屬屏蔽材料相對于銅的電導(dǎo)率(σCu=5.8×107Ω/m)f=150kHz時的相對磁導(dǎo)率f=150kHz時的吸收損耗/(dB/m)
1.05152
1.00151
0.70142
0.61140
0.29128
黃銅0.26126
0.23124
0.20123
磷青銅0.18122
0.171000650
鋼#450.101000500
坡莫合金0.03800002500
不銹鋼0.021000220

上一頁 1 2 3 下一頁

關(guān)鍵詞: 分析 技術(shù) 屏蔽 電磁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉