雜散電感對(duì)高效IGBT逆變器設(shè)計(jì)的影響
小電感和大電感設(shè)置的電流波形在時(shí)間戳b的位置交叉。在第一開關(guān)階段直到交叉點(diǎn)b,采用大電感設(shè)置升高的過壓會(huì)使損耗增至36.3mJ,而小電感設(shè)置的損耗為30.8mJ。不過,在b點(diǎn)之后,大電感設(shè)置會(huì)產(chǎn)生較短的電流拖尾,這樣該階段的損耗會(huì)比小電感設(shè)置的損耗低1.8mJ。這一結(jié)果主要受電流拖尾降低的影響,即更快速地達(dá)到10%的值。
隨著雜散電感的增大,IGBT的開通損耗會(huì)降低,二極管損耗則會(huì)增大(如圖4所示)。圖4顯示了在小電感和大電感條件下二極管恢復(fù)特性的對(duì)比。
圖4:二極管恢復(fù)特性:上圖顯示的是針對(duì)兩個(gè)電感的損耗/時(shí)間曲線(實(shí)線:L=23nH、虛線:L=100nH),下圖顯示的是電壓和電流曲線。
顯而易見,IGBT降低的di/dt幾乎對(duì)二極管換流開始階段的損耗沒有任何影響,因?yàn)槎O管電壓依然維持在零左右。在反向恢復(fù)峰值電流之后,更大雜散電感引起的二極管電壓升高決定并導(dǎo)致了額外的損耗。小電感和大電感設(shè)置的二極管拖尾電流中可再次看到交叉點(diǎn)c。更高的過壓使得c點(diǎn)之前的損耗從10.1mJ增至19.6mJ。與IGBT的情況一樣,增加的動(dòng)態(tài)過壓會(huì)導(dǎo)致c點(diǎn)之后的拖尾電流降低,大電感設(shè)置的損耗平衡將優(yōu)化4.4mJ。總之,第一開關(guān)階段起主導(dǎo)作用,二極管損耗隨著電感的增加從24.6mJ提高至29.7mJ,增幅為20%。
表2:對(duì)英飛凌IGBT的折衷:在相同雜散電感和軟度條件下的關(guān)斷損耗。
實(shí)驗(yàn)結(jié)果的總動(dòng)態(tài)損耗
盡管在開通過程中,di/dt與寄生電感的結(jié)合可降低IGBT的電壓,但在關(guān)斷過程中,它將增大IGBT的電壓過沖。將開通與關(guān)斷過程進(jìn)行左右對(duì)比,不難看出,在較大寄生電感時(shí)開通損耗的降度遠(yuǎn)高于關(guān)斷損耗的增幅。
如果考慮到最新溝槽柵場(chǎng)截止IGBT的關(guān)斷di/dt本質(zhì)上受器件動(dòng)態(tài)性能的制約,約為導(dǎo)通di/dt的一半,就可輕松理解這一趨勢(shì)。
在圖5中,對(duì)IGBT開通損耗、關(guān)斷損耗以及二極管換流損耗與三款I(lǐng)GBT的寄生直流母線雜散電感進(jìn)行了對(duì)比。
圖5:開關(guān)損耗作為雜散電感Ls的函數(shù),電感的增大將降低IGBT的開通損耗(左圖);IGBT的關(guān)斷損耗(右圖)和續(xù)流二極管關(guān)斷損耗會(huì)隨著電感的增大而升高。
評(píng)論